М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alina28042002
alina28042002
31.07.2022 08:55 •  Алгебра

Найти угловой коэффициент касательной к графику функции у= x^3 + 27 в точке пересечения этого графика с осью абсцисс.

👇
Ответ:
Ghalachyansona
Ghalachyansona
31.07.2022
Ну, сначала найдём точку пересечения графика с осью абсцисс. Знаем, что точка, лежащая на оси х имеет ординату = 0
х³ + 27 = 0
х³ = -27
х = -3
Теперь: угловой коэффициент - это производная данной функции в данной точке.
y' = 3x²
y' = 3*(-3)² = 27
ответ: k = y' = 27
4,8(62 оценок)
Открыть все ответы
Ответ:
VladSolo
VladSolo
31.07.2022

6 и -21

Объяснение:

Перевод: Найти наибольшее и наименьшее значения функции:

y = 2·x³-3·x²-12·x-1

на промежутке [-2; 3].

Решение. Применим алгоритм нахождения наибольшее и наименьшее значения функции на интервале.

1) Находим производную от функции:

y'=(2·x³-3·x²-12·x-1)' =2·(x³)'-3·(x²)'-12·(x)'-(1)' =2·3·x²-3·2·x-12·1-0=6·x²-6·x-12.

2) Находим критические точки функции принадлежащие промежутке [-2; 3]:

y'=0 ⇔ 6·x²-6·x-12=0 ⇔ x²-x-2=0 ⇔ x²-1-x-1=0 ⇔ (x-1)·(x+1)-(x+1)=0 ⇔

⇔ (x-1-1)·(x+1)=0 ⇔ (x-2)·(x+1)=0 ⇒ x₁=2∈[-2; 3], x₂= -1∈[-2; 3].

3) Вычислим значение функции в критических точках из промежутка и на границах промежутка:

y(-2) = 2·(-2)³-3·(-2)²-12·(-2)-1 = -16-12+24-1 = -5;

y(-1) = 2·(-1)³-3·(-1)²-12·(-1)-1 = -2-3+12-1 = 6;

y(2) = 2·2³-3·2²-12·2-1 = 16-12-24-1 = -21;

y(3) = 2·3³-3·3²-12·3-1 = 54-27-36-1 = -10.

4) Выбираем наибольшее и наименьшее значения функции среди значений из пункта 3:

наибольшее - это число 6;

наименьшее - это число -21.

4,4(63 оценок)
Ответ:
111rrrr4544tgd
111rrrr4544tgd
31.07.2022

условно сходится

Объяснение:

Для выяснения сходимости ряда используем признак Лейбница.

a_{n}= \frac{1}{\sqrt{3n+1}}

Очевидно, что

1. a_{1}\geq a_{2}\geq ...\geq a_{n}\geq ..., так как с увеличением номера n увеличивается знаменатель, а с ростом знаменателя дробь становится все меньше и меньше;

2.\lim_{n \to \infty} a_n= \lim_{n \to \infty} \frac{1}{\sqrt{3n+1} }=0

Надеюсь, данный факт ясен.

Два условия выполнены, следовательно, ряд по признаку Лейбница сходится.

Выясним вопрос относительно абсолютной сходимости. Для этого нужно рассмотреть соответствующий ряд из модулей исходного ряда.

Напомню, что модуль "съедает" множитель вида  (-1)^{n+1}. Значит, общий член нового ряда имеет вид u_{n}= \frac{1}{\sqrt{3n+1}}.

Для установления сходимости данного ряда используем интегральный признак Коши. Это можно сделать, поскольку  действительнозначная функция

                    u(x)= \frac{1}{\sqrt{3x+1}}

неотрицательна, непрерывна и убывает на интервале [1,\infty)

Можно рассмотреть несобственный интеграл. Исследуем его на сходимость. подробности в приложенном файле.

Итак,  получена бесконечность, стало быть, несобственный интеграл расходится.

Ряд сходится либо расходится вместе с несобственным интегралом. То есть, расходится.                                   

Таким образом, сам ряд сходится. Но ряд из модулей расходится, что исключает абсолютную сходимость ряда. А сходящийся ряд, не сходящийся абсолютно, сходится условно.


Установить, сходится или расходится знакочередующийся ряд, если сходится, то выяснить каким образом:
4,4(25 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ