Дана система ур-ний 2x−y=19x−2 5y=14 Приведём систему ур-ний к каноническому виду −17x−y=−2 5y=14 Запишем систему линейных ур-ний в матричном виде [−17−1−20514] В 1 ом столбце [−170] делаем так, чтобы все элементы, кроме 1 го элемента равнялись нулю. - Для этого берём 1 ую строку [−17−1−2] , и будем вычитать ее из других строк: Во 2 ом столбце [−15] делаем так, чтобы все элементы, кроме 2 го элемента равнялись нулю. - Для этого берём 2 ую строку [0514] , и будем вычитать ее из других строк: Из 1 ой строки вычитаем: [−17−0−1−−1−2−−145]=[−17045] получаем [−170450514] Все почти готово - осталось только найти неизвестные, решая элементарные ур-ния: −17x1−45=0 5x2−14=0 Получаем ответ: x1=−485 x2=145
Объяснение:
Объяснение:
1) 3 - 21x = 24x² ;
24x² + 21x - 3 = 0 ; │: 3
8x² + 7x - 1 = 0 ;
D = 7² - 4*8*( - 1 ) = 81 > 0 ; x₁ = ( - 7 - 9 )/2*8 = - 1 ; x₂ = ( -7 + 9 )/2*8 = 1/8 .
В - дь : - 1 ; 1/8 .
2) 32x² + 9x = - 36x ;
32x² + 9x + 36x = 0 ;
32x² + 45x = 0 ;
x* ( 32x + 45 ) = 0 ;
x₁ = 0 ; 32x + 45 = 0 ;
32x = - 45 ;
x = - 45/32 ;
x = - 1 13/32 . В - дь : - 1 13/32 ; 0 .
3) 9 = 48x² + 6x ;
48x² + 6x - 9 = 0 ; │ : 3
16x² + 2x - 3 = 0 ;
D = 196 > 0 ; x₁= - 1/2 ; x₂= 3/8 .
В - дь : - 1/2 ; 3/8 .
7d=70
d=10
2+10d=-102
10d=-104
d=-10,4
6d=-30
d=-5
-5+14d=33
14d=38
d=19/7
8+20d=92
20d=84
d=21/5
5+18d=-85
18d=-90
d=-5
-3+16d=-83
16d=-80
d=-5
-6+55d=-116
55d=-110
d=-2