х₁= -√6 (≈ -2,5)
х₂=√6 (≈2,5)
Объяснение:
Координаты вершины параболы (0; -3), значит, х₀= 0, отсюда b=0; у₀= -3, отсюда с= -3.
Уравнение параболы у=ах²+bх+с.
Подставляем в уравнение известные значения х и у (координаты точки D(6; 15) и вычисляем а. Уже известно, что b=0, а с= -3:
15=а*6²+0*6-3
15=36а-3
-36а= -3-15
-36а= -18
а= -18/-36
а=0,5
Уравнение принимает вид: у=0,5х²-3
Решаем квадратное уравнение, находим корни, которые являются точками пересечения параболой оси Ох:
0,5х²-3=0
0,5х²=3
х²=6
х₁,₂= ±√6
х₁= -√6 (≈ -2,5)
х₂=√6 (≈2,5)
1) {3x - y = 3 Из первого ур-я вычтем второе
{3x -2y = 0
Получим у = 3, подставим это значение в 1 ур-е и найдем Х.
3х - 3 = 3 3х = 6 х = 2
ответ. (2; 3)
3) V(a^2 + b^2) при а = 12 и в = -5
V(12^2 + (-5)^2) = V(144 + 25) = V169 = 13
№2. в) x^2 + 4 < 0 не имеет решений т. к. x^2 >= при любом Х
и х^2 + 4 > 0 при любом Х.
sin²α + cos²α = 1 ⇒ cos² α = 1-sin²α ⇒cos²α = 1-8/9 = 1/9
cosα = √1/9 = 1/3 ( cosα = - 1/3 -не подходит для α ϵ (3π/2;2π))
3 cosα = 3*1/3 = 1
ответ: 1