Пересечение: А∩В=общие числа А и В={-2;-1;0;1;2}
В∩С=общие числа В и С={-2;-1;0;1;2;3;4}
А∩С=общие числа А и С={-4;-3;-2;-1;0;1;2}.
Объединение: А∪В=все числа и А и В={-4;-3;-2;-1;0;1;2;3;4}
В∪С=все числа и В и С={-4;-3;-2;-1;0;1;2;3;4}
А∪С=все числа и А и С={-4;-3;-2;-1;0;1;2;3;4}.
Разность:А\В=числа из А, которых нет в В={-4;-3}
В\С=числа из В, которых нет в С=∅
А\С=числа из А, которых нет в С=∅.
Объяснение:
Пересечение: А∩В=общие числа А и В={-2;-1;0;1;2}
В∩С=общие числа В и С={-2;-1;0;1;2;3;4}
А∩С=общие числа А и С={-4;-3;-2;-1;0;1;2}.
Объединение: А∪В=все числа и А и В={-4;-3;-2;-1;0;1;2;3;4}
В∪С=все числа и В и С={-4;-3;-2;-1;0;1;2;3;4}
А∪С=все числа и А и С={-4;-3;-2;-1;0;1;2;3;4}.
Разность:А\В=числа из А, которых нет в В={-4;-3}
В\С=числа из В, которых нет в С=∅
А\С=числа из А, которых нет в С=∅.
Объяснение:
Найти угол между векторами a = {4; 6} и b = {6; -4}.
Решение: Найдем скалярное произведение векторов:
a·b = 4 · 6 + 6 · (-4) = 24 - 24 = 0
Найдем модули векторов:
|a| = √42 + 62 = √16 + 36 = √52
|b| = √62 + (-4)2 = √36 + 16 = √52
Найдем угол между векторами: см.фотографию
cos α =0 α=90*