Решение
Пусть скорость мотоциклиста x км/ч, тогда скорость велосипедиста (x–45) км/ч.
Расстояние между городами равно 60 км, тогда время в пути, которое затратили мотоциклист и велосипедист, равно соответственно 60/x часа и 60/(45 – x) часа.
Так как велосипедист был в пути на 3 часа дольше, чем мотоциклист.
Составим и решим уравнение:
60/(x – 45) - 60/x = 3
x ≠ 45, x ≠ 0
(60x – 60x + 2700 – 3x^2 + 135x) / x(x – 45) = 0
x² – 45x – 900 = 0
x₁= - 15 не удовлетворяет условию задачи
x₂ = 60
Итак, скорость мотоциклиста 60 км/ч,
60 - 45 = 15 км/ч. - скорость велосипедиста
ответ: 15 км/ч.
a3=a1+2d
a5=a1+4d
a7=a1+6d
a2=a1+d
a4=a1+3d
a6=a1+5d
a8=a1+7d
Следую из условия задания получаем следующие равенства
{a1+a1+2d+a1+4d+a1+6d=56
{a1+d+a1+3d+a1+5d+a1+7d=68
{4a1+12d=56
{4a1+16d=68
Решаем систему любым вариантом (я - вычел из второго равенства первое)
4d=12 ⇒ d=3
a1=5