Объяснение:
(х + 12)(х – 4)(х – 20) > 0
решим неравенство методом интервалов
приравняем исходное выражение к 0 и найдем корни
(х + 12)(х – 4)(х – 20) =0
x₁=-12 ; x₂=4; x₃=20
нанесем корни на числовую прямую и найдем знаки выражения на каждом интервале
если перемножить скобки то коэффициент при х³ будет 1.
1>0 тогда при больших х знак выражения будет (+)
соответственно при малых х знак выражения будет (-)
в остальных интервалах знаки чередуются
(-12)420>
- + - +
так как исходное выражение >0 то выбираем интервалы со знаком (+)
х∈(-12;4)∪(20;+∞)
Пусть х дм - длина одного катета, тогда
(23+х) дм - длина другого катета.
37 дм - гипотенуза
ОДЗ: 0<x<37
Согласно теореме Пифагора для прямоугольного треугольника сумма квадратов катетов равна квадрату гипотенузы, получаем уравнение:
x² + (23+x)² = 37²
x² + 529 + 46x + x² = 1369
2x²+46x+529-1369 = 0
2x²+46x-840 = 0 |:2
x²+23x-420 = 0
D = 23² - 4·1·(-420) = 529+1680 = 2209 = 47²
x₁ = (-23-47)/2 = -60/2 = - 30 < 0 не удовлетворяет ОДЗ.
x₂ = (-23+47)/2 = 24/2 = 12 удовлетворяет ОДЗ.
Получаем:
12 дм - длина одного катета;
23+12 =35 дм - длина другого катета;
37 дм - гипотенуза
Найдем периметр прямоугольного треугольника:
12 + 35 + 37 = 84 (дм)
ответ: 84 дм
6х -3 < 5,4 - x
7x < 8,4
x < 1,3
наибольшее целое = 1