М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Molka2005
Molka2005
02.10.2021 22:17 •  Алгебра

Решить по интеграллам, пож. s 2x / 81 dx

👇
Ответ:
Lansiksgo
Lansiksgo
02.10.2021
\displaystyle \int \frac{2x}{81} dx = \frac{2}{81}\int x dx= \frac{2}{81} \cdot \frac{x^2}{2}= \frac{x^2}{81}+C
4,4(32 оценок)
Открыть все ответы
Ответ:
lisa20060701
lisa20060701
02.10.2021
1) (16x^2 - 64x) - (9y^2 + 54y) - 161 = 0
16(x^2 - 4x + 4) - 64 - 9(y^2 + 6y + 9) + 81 = 161
16(x - 2)^2 - 9(y + 3)^2 = 16
(x - 2)^2 - (y + 3)^2 / (16/9) = 1
Это гипербола с центром A(2; -3) и полуосями a = 1; b = √(16/9) = 4/3

2) y = cos(x + y)
y' = -sin(x + y)*(1 + y') = -sin(x + y) - y'*sin(x + y)
y' + y'*sin(x + y) = -sin(x + y)
y' = - sin(x+y) / (1 + sin(x+y))

3) (1+x^2) dy - 2xy dx = 0
(1+x^2) dy = 2xy dx
dy/y = 2x dx / (1+x^2)
Интегрируем обе части
\int { \frac{dy}{y} }=ln|y|
\int { \frac{2xdx}{1+x^2} }=|1+x^2=t;dt=2xdx|=\int \frac{dt}{t} =ln|t|+C=ln|1+x^2|+lnC
ln |y| = ln |1+x^2| + ln C
y = C(1 + x^2)
Решаем задачу Коши.
y(-1) = C(1 + (-1)^2) = 2C = 4
C = 2
y = 2(1 + x^2)
4,6(70 оценок)
Ответ:
4755Kristina501
4755Kristina501
02.10.2021
Уравнение любой касательной к любому графику находится по формуле:
f'(x_{0})*(x-x_{0})+f(x_{0})
Где f'(x_{0}) производная функции в данной точке. А x_{0} точка касания по иксу.

1)
Поначалу у функции y=x^{0,2} мы должны найти производную общего типа этой функции.
Это степенная функция, а производная любой степенной функции находится следующей формулой:
f'(x)=nx^{n-1} - где n это степень.
В нашем случае:
f'(x)=0,2x^{0,2-1}= 0,2x^{-0,8}
Так, нашли производную общего случая.

Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
y=0,2x_{0}^{-0,8}*(x-x_{0})+x_{0}^{0,2}

2) 
Опять же, найдем производную 
y=\frac{1}{3}^{(x-2)-1}
f'(x)=(x-3)x^{(x-4)}
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
y= (x_{0}-3)x_{0}^{(x_{0}-4)}*(x-x_{0})+(1/3)^{(x_{0}-3)}

То есть, берешь любой икс, и вставляешь в выражение касательной вместо x_{0} и получаешь уравнение касательной.

Это и есть окончательные ответы. 
Если что-то не правильно, то это значит что вы не правильно написали условие.
4,6(66 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ