1)Чтобы найти возрастание и убывание функции нужно найти экстремумы и посмотреть как будет вести себя функция при малейшем отклонении. значит экстремумы в точках -(1;-1) а это значит что минимумов у функции нет ,так же как и максимумов,но убывает на всей числовой прямой . 2) значит экстремумы в точках (-2;16),(2;16) А тут видно что максимумы функции в точках x=2,а минимумы в точках x=-2 убывает на промежутках [-2;2] возрастает (-∞;2]∪[2;+∞) 3)сначала найдём производные 1 производная : x∉R видим что первой производной нет ,ищем вторую функция выпукла: (-∞;0) f"(x)<0 функция вогнута (0;+∞) f"(x)>0
Луч — часть прямой, состоящая из данной точки и всех точек, лежащих по одну сторону от неё. Любая точка на прямой разделяет прямую на два луча.
Более точно, каждая точка O на прямой разбивает множество точек этой прямой, отличных от O, на два непустых подмножества — полупрямых — так, что точка O лежит между любыми двумя точками прямой, принадлежащими разным подмножествам. Каждое из этих подмножеств называется открытым лучом с началом в O.
Луч с началом в точке O, содержащий точку A, обозначается «луч ОА» [1].
Для любого неотрицательного числа a на заданном луче с началом O существует единственная точка A, находящаяся на расстоянии a от точки O.