1) f(-3,5) = -0.5; f(-2,5) = 2; f(-1) = 0; f(2) = -1.
Здесь последовательно находим абсциссы х=-0,5; х=-2,5; х=-1; х=2, проводим прямую, параллельно оси оу до точки пересечения с графиком и называем, чему в этой точке равна ордината.
2) f(x)=-2,5, если х = 5 ; f(x)=-2, если х=3,5;
f(x)=0, если х=-3, х=-1, х=1,5;
f(x)=2, если х=0; х=-1,5, х=-2,5.
Здесь наоборот, по известной ординате, у=-2,5; у=-2; у=0; у=2 находим абсциссу х, их может быть несколько, т.к. прямая, параллельная оси ох пересекает график в нескольких точках, опускаем из этих точек перпендикуляры на ось ох и читаем ответы
3) Е(у) = [-2,5; 3]- это те значения, которые пробегает у. самое маленькое у=-2,5, самое большое у=3.
5x^2+3x-2 / 10x^2+x-2
Решим каждое выражение по формуле дискриминанта:
5x^2+3x-2=0
D= 9+40=49
корень из D=7
x1= -3-7/10= -1
x2= -3+7/10= 0,4
Используя это, выражение можно представить так: (впереди всегда ставится первый коэфицент, в данном случае 5, а остальное раскладываем на скобки ... затем пять умножаем на вторую скобку, чтобы избавиться от дроби 0,4)
5x^2+3x-2= 5(x+1)(x-0,4)= (x+1)(5x-2)
Тоже самое делаем со вторым выражением:
10x^2+x-2=0
D=1+80=81
корень из D=9
x1= -1-9/20= -0,5
x2= -1+9/20= 0,4
Тут все так же. Впереди 10, но мы раскладываем десятку на 2 и 5, и умножаем на "удобные" скобки, чтобы избавиться от дробей.
10x^2+x-2= 10(x+0,5)(х-0,4)= (2х+1)(5х-2)
Заменяем данные выражения - получившимися:
(х+1)(5х-2) / (2х+1)(5х-2)= х+1 / 2х+1
При делении скобка (5х-2) сократится.
Окончательный ответ дробь х+1 / 2х+1
Это все :) Объяснила, как смогла, удачи))
Если что, во вложениях формулы для решения дискриминанта!
====================================