Объяснение:
4. Раскрываем скобки:
2y^2 - 4y - 14y+28 = 0
2y^2 -18y+28 = 0
получаем квадратное уравнение, решаем через дискриминант :
записываем условие : a = 2; b= -18; c= 28;
формула D=b^2 - 4ac= 324 - 224= 100, рассчитываем корень из D = 10( 10^2 =100), далее находим х1 и х2 ;
x1 = -b(при этом b ставим не минус, а противоположный знак)+корень из D : 2a= (18+10): 4= 28:4= 7;
х2= -b - корень из D: 2а =(18 - 10):2а= 8:4= 2;
ответ: x1 = 7; x2= 2.
1. Раскрываем скобки - 2x +4 - 2x^2-4x+x^2-9, и далее решаем:
-2x - 5 - 1x^2 - квадратное уравнение, решаем через D (при этом a=
- 1, b=-2, c=-5)
d=b^2 - 4ac = 4 - 20= -16, в итоге получаем что корней в данном уравнении НЕТ, т.к если D<0 - КОРНЕЙ НЕТ, соответственно значение выражения не зависит от значения переменной.
ответ: Корней нет.
2. -4*(2.5 а-1.5)+5.5а - 8
при а= -0.5
во первых упростим выражение: -10а + 6+ 5.5а - 8= -4.5а -2;
подставим значение а = - 0.5
(-4.5 ) *(-0.5) - 2 = 2.25 - 2 = 0.25
ответ: 0.25.
3. (-2а +b)^2 (как я понял это квадрат) : -4а^2 +4ab +b^2, в общем я не смог решить это задание , но это либо ответ под д) либо е) другие вообще не подходят, т.к не соответстуют правилам сокращённого умножения.
Объяснение:
5x²-4xy+y²=4x+1
y²-4xy=-5x²+4x+1
y²-4xy+4x²=-x²+4x+1
(y-2x)²=-x²+4x+1
1) y-2x=√(-x²+4x+1); y=2x+√(-x²+4x+1)
2) y-2x=-√(-x²+4x+1); y=2x-√(-x²+4x+1)
-x²+4x+1≥0; x²-4x-1≤0
Допустим x²-4x-1=0; D=16+4=20
x₁=(4-2√5)/2=2-√5; x₂=2+√5
Возьмём для определения знака пробную точку на промежутке [2-√5; 2+√5], например, 0:
-0²+4·0+1=1; 1>0
Неравенство выполняется на данном интервале:
- + -
..>x
2-√5 2+√5
x∈[2-√5; 2+√5]
2-√5≈-0,24; 2+√5≈4,24
Выбираем пары целочисленных решений:
x=0; y=2·0±√(-0²+4·0+1); y₁=-1; y₂=1
x=1; y=2·1±√(-1²+4·1+1)=2±2; y₁=0; y₂=4
x=2; y=2·2±√(-2²+4·2+1)=4±√5 - не подходит.
x=3; y=2·3±√(-3²+4·3+1)=6±2; y₁=4; y₂=8
x=4; y=2·4±√(-4²+4·4+1)=8±1; y₁=7; y₂=9
х^2=-1
Решений нет, значит и общих точек графики не имеют