Итак, если уравнение вида 1) ах^2+вх=0, т.е. с=0, то для решения выносим за скобки х: х(ах+в) =0. Произведение равно равно нулю, если хотя бы один из множителей равен нулю. Получаем: х=0 или ах+в=0 х=0 или х=-в/а - искомые решения. 2) ах^+с=0, т. е. в=0, то имеем два случая: а) а и с - одного знака: уравнение в этом случае решений не имеет, т.к. для любого х ах^2+с>0. б) а и с - разных знаков: используем формулу разность квадратов
Произведение равно нулю, если хотя бы один из множителей равен нулю, т. е.
-0,6x + 0,8 = 1 - x - 0,5
-0,6x + x = 0,5 - 0,8
0,4x = - 0,3
x = -0,3 : 0,4
x = -3/10 : 4/10
x = -3/10 * 10/4
x = -3/4
ответ №1