Проведем через каждую точку прямую проходящую через еще одну другую точку, всего точек 8, через каждую отдельно проведены 7 прямых (через выбранную точку и 8-1=7 других оставшихся), при этом общем подсчете мы учтем каждую прямую дважды, по разу для каждой из двух принадлежащих ей точек, а значит общее количество прямых которые можно провести через эти точки равно 8*7:2=28 ответ: 28 прямых
1) Ставим 1 том первым. Вторым может быть любой, кроме 4. Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта. Всего 24*4 = 96 вариантов. 2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта. Остальные 3 тома как угодно. Это 6 вариантов. Всего 4*3*6 = 72 варианта. 3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов. Второй - любой, кроме 4. Это 3 варианта. Четвертый - тоже любой, кроме 4. Это 2 варианта. Пятый и шестой - какие угодно. Это 2 варианта. Всего 5*3*2*2 = 60 вариантов. 4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов. 5) Ставим 1 том пятым. Это аналогично 2). 72 варианта. 6) Ставим 1 том последним. Это аналогично 1). 96 вариантов. Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.
Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
ответ: 28 прямых