Решу через производную: y'=(x^4-2x^2-3)'=4x^3-4x 4x^3-4x=0 4x(x^2-1)=0 4x=0 или x^2-1=0 x=0 или x=1 и x=-1 Функция определена при любых значениях xна(-∞;-1) функция убывает на (-1;0) функция возрастает на (0;1) снова убывает и на (1;+∞) возрастает. Точки экстремиума: x min=-1 x max=1 Дальше ищем точки соприкосновения графика с осями X и Y x^4-2x^2-3=0 x^2=y y^2-2y-3=0 D=b^2-4ac=(-2)^2-4*1*(-3)=4+12=16 больше 0 следственно 2 корня уравнения y=(2+4)/2 и y=(2-4)/2 y=3 и y=-1x^2=3 и x^2=-1 x=кв.кор из 3 и минус кв. кор из 3 x=0,y=-3Точки касания найдены далее найдём есть ли у функции пределlim при x стремящимся к бесконечности = x^4/x^2-2x^2/x^2-3/x^2=x^2-2-3/x^2=∞ и по этим точкам строишь график , можешь ещё составить таблицу значений , чтобы как можно точнее построить график. Всё)Я думаю так
ВвоыоФункция arcsin(x) обозначает угол, синус которого равен х. Это можно записать математически: sin(arcsin(x))=x. Справедливо и обратное: arcsin(sin(x))=x. Функция arcsin(x) - нечетная, как и обратная ей функция sin(x). Это значит, что arcsin(-x) = - arcsin(x). Поэтому arcsin(-3/4) = -arcsin(3/4). В принципе, arcsin(3/4) - это иррациональное число, выражающее некоторый вполне конкретный угол, заданный именно таким выражением. Но если тебя не устраивает такая запись, можно найти приближенное значение при инженерного калькулятора
у^4-16