1) сумма внутренних односторонних углов при параллельных прямых и секущей равна 180 градусов, получаем 3+1 = 4 части в двух углах всего 180:4=45 градусов в одной части = в меньшем угле 45*3=135 градусов в трёх частях = в большем угле
2) При пересечении двух параллельных прямых секущей, образуются - внутренние односторонние углы,но их сумма равна 180; - соответственные углы и они равны, значит по условию их сумма может быть равна 74 градуса, тогда каждый из них по 74:2=37 градусов; - внутренние накрестлежащие углы и они равны, значит каждый из них может быть по 37 градусов.
3) 1) 4-1=3 части разность в углах 2) 108:3=36 градусов в одной части = в меньшем угле 3) 36*4=144 градуса в четырех частях = в большем угле 4) 144+36=180 градусов сумма данных односторонних углов и так как она равна 180 градусам, то данные прямые параллельны по признаку параллельности прямых
1) сумма внутренних односторонних углов при параллельных прямых и секущей равна 180 градусов, получаем 3+1 = 4 части в двух углах всего 180:4=45 градусов в одной части = в меньшем угле 45*3=135 градусов в трёх частях = в большем угле
2) При пересечении двух параллельных прямых секущей, образуются - внутренние односторонние углы,но их сумма равна 180; - соответственные углы и они равны, значит по условию их сумма может быть равна 74 градуса, тогда каждый из них по 74:2=37 градусов; - внутренние накрестлежащие углы и они равны, значит каждый из них может быть по 37 градусов.
3) 1) 4-1=3 части разность в углах 2) 108:3=36 градусов в одной части = в меньшем угле 3) 36*4=144 градуса в четырех частях = в большем угле 4) 144+36=180 градусов сумма данных односторонних углов и так как она равна 180 градусам, то данные прямые параллельны по признаку параллельности прямых
т.е. (по определению) х --это угол, косинус которого cos(x) = 4/5
0 ≤ x ≤ pi и т.к. cos(x) > 0, следовательно, 0 ≤ x ≤ pi/2
sin(x) = +√(1-(16/25)) = 3/5
tg(x) = (3/5) : (4/5) = 3/4
обозначим: у = arcsin(7/25)
т.е. (по определению) y --это угол, синус которого sin(y) = 7/25
-pi/2 ≤ y ≤ pi/2 и т.к. sin(y) > 0, следовательно, 0 ≤ y ≤ pi/2
cos(y) = +√(1-(49/625)) = 24/25
tg(y) = (7/25) : (24/25) = 7/24
tg(x-y) = (tg(x) - tg(y)) / (1 + tg(x)*tg(y)) =
= ((3/4) - (7/24)) / (1 + 3*7/(4*24)) =
= (11/24) : (39/32) = 11*4 / (3*39) = 44/117