Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение:
ответ:
объяснение:
1.
(x+2)(x-3)(x-4) < 0
(-2) (3) (4)
x∈(-∞ -2) u (3 4)
2
(x+5)/(x-2)/(x-1)^2 > =0
[-5] (1) [2]
x∈(-∞ -5] u [2 +∞)
3
(2x+1)/(x-3) < =1
(2x+1)/(x-3) - 1< =0
(2x+1 - x + 3)/(x-3)< =0
(x+4)/(x-3)< =0
[-4] (3)
x∈[-4 3)
4
x/(x-4) + 5/(x-1) + 24/(x-1)(x-4) < =0
(x(x-1) + 5(x-4) + 24)/(x-1)(x-4) < =0
(x^2 - x + 5x - 20 + 24) /(x-1)(x-4) < =0
(x^2-4x+4)/(x-1)(x-4) < =0
(x-2)^2/(x-1)(x-4) < =0
(1) [2] (4)
x∈(1 4)
добро ! получи неограниченный доступ к миллионам подробных ответов
попробуй сегодня
надеюсь если сможешь отметь как лучший
1) 2х+у=7,
х-2у=11,
2) у=7-2х
х-2(7-2х)=11,
3) у=7-2х,
х-14+4х=11,
4) у=7-2х,
5х=25,
5)у=-3
х=5.