Будь-яка квадратична функція (тобто, парабола) має вертикальну вісь симетрії, яка проходить через вершину цієї параболи.
Якщо f(4)=f(20), то це означає, що точки на параболі з абсцисами 4 та 20 симетричні відносно вісі симетрії параболи. З цього випливає, що вісь знаходиться посередині між точками з абсцисами 4 та 20, тобто, (4+20)/2 = 12, або ж х=12 - рівняння, яким задається вертикальна вісь симетрії.
З іншого боку, точки з абсцисами -5 та деяким невідомим числом "х" теж симетричні відносно цієї ж вісі симетрії х=12.
Звідси складемо рівняння відносно того, що ці дві точки також рівновіддалені від вертикальної прямої х=12:
(-5+х)/2 = 12
-5+х = 24
х = 29
Відповідь: х = 29
-x>=4
x<-4
x²-5x<x²+3x+1
x²-x²Cокращаем,получается -5x-3x<1
-8x<1
x>-⅛
x²-5x+6<=0
a=1 b=-5 c= 6
D= b²-4ac=(-5)²-4*1*6=25-24=1
x¹=-b±кореньD/2a= 5±1= 3 и 2
2