1+sinx·√(2ctgx) ≤ 0
Подкоренное выражение не может быть отрицательным
ctg x ≥ 0 0.5π ≥ x > 0 это в 1-й четверти
1.5π ≥ x > π это в 3-й четверти
в 1-й четверти sinx > 0 и выражение 1+sinx·√(2ctgx)> 0
в 3-й четверти sinx < 0 и выражение 1+sinx·√(2ctgx)может стать меньше 0, если
sinx·√(2ctgx) ≤ -1
делим на отрицательный синус
√(2ctgx) ≥ -1/sinx
обе части положительны
возводим в квадрат
2ctgx ≥ 1/sin²x
2ctgx ≥ 1 + ctg²x
1 + ctg²x - 2ctgx ≤ 0
(1 - ctgx)² ≤ 0
Квадрат любого числа не может быть отрицательным, поэтому остаётся только
равенство нулю:
1 - ctgx = 0
ctgx = 1 (четверть 3-я!)
х = 5/4π
Решение единственное: при х = 5/4π выражение 1+sinx·√(2ctgx) = 0
ну, и, разумеется следует добавить 2πn, тогда решение такое:
х = 5/4π +2πn
Объяснение:
1. x^2 - 4x - 32 = 0
D = (-4)^2 - 4 * 1 * (-32) = 16 + 128 = 144
x₁ = (4 - √144) / 2 = (4 - 12) / 2 = -4
x₂ = (4 + √144) / 2 = (4 + 12) / 2 = 8
x^2 - 4x - 32 = (x + 4) * (x - 8)
4x^2 - 15x + 9 = 0
D = (-15)^2 - 4 *4 * 9 = 225 - 144 = 81
x₁ = (15 - √81) / (2 * 4) = (15 - 9) / 8 = 0,75
x₂ = (15 + √81) / (2 * 4) = (15 + 9) / 8 = 3
4x^2 - 15x + 9 = 4 * (x - 0,75) * (x - 3) = (4x - 3) * (x - 3)
2. x^4 - 35x^2 - 36 = 0
Пусть t = x^2
t^2 - 35t - 36 = 0
D = (-35)^2 - 4 * 1 * (-36) = 1225 + 144 = 1369
t₁ = (35 - √1369) / 2 = (35 - 37) / 2 = -1
t₂ = (35 + √1369) / 2 = (35 + 37) / 2 = 36
Вернёмся к замене
x^2 = -1
x = ±√-1
x = ± i
x^2 = 36
x = ±6
x + 2 ≠ 0 ⇒ x ≠ -2
Умножим обе части дроби на x+2
x^2 - 7x -18 = 0
x₁ = -2 - не имеет смысла
ответ : 9
3. 4a^2 + a - 3 = 0
D = 1^2 - 4 * 4 * (-3) = 1 + 48 = 49
a₁ = (-1 - √49) / (2 * 4) = (-1 - 7) / 8 = -1
a₂ = (-1 + √49) / (2 * 4) = (-1 + 7) / 8 = 0,75
4a^2 + a - 3 = 4 * (a + 1) * (a - 0,75) = (a + 1) (4a - 3)
у 2 4 0
теперь просто начерти график и расставь точки