1) y-2. ОДЗ: y≠2
2) a-1. ОДЗ: a≠1
Объяснение:
№1. (y+2+):
=
:
=
=y-2. ОДЗ: y≠2
№2. (a+1+):
=
:
=
=a-1. ОДЗ: a≠1
ОДЗ - область допустимых значений. Т.е. когда мы сокращаем что-либо в числителе и знаменателе, то мы можем потом включить это число в решения. То есть, например, в первом номере мы сокращаем скобку y-2. Тем самым мы сознательно "пропускаем" в решения (если бы мы не просто упрощали, а решали такое уравнение). Но эта скобка стоит у нас в знаменателе. А знаменатель не может быть равен 0, т.к. на 0 делить нельзя. Значит нужно исключить решение такого уравнения: y-2=0, т.е. y не равен 2. В первом номере скобку y^2+4 мы не выносим в ОДЗ, потому что если мы будем решать такое уравнение: y^2+4=0, то увидим, что оно никогда не будет равно 0. Квадрат любого числа - число неотрицательное по определению, а неотрицательное+положительное=положительное, т.е. не равное 0. Поэтому эту скобку мы не вносим в ОДЗ. Во втором номере мы сокращаем a^2, т.е. автоматически "пропускаем" a=0. Значит нужно его исключить. Также мы сокращаем скобку a-1, значит нужно исключить решение уравнения a-1=0, т.е. a не равно 1.
y'(x) = (2x³/3 -x²)' = 2x²-2x
2. найдем точки, в которых y'(x) = 0
2x²-2x =0
2x(x-1) =0
х=0 или х=1 - критические точки
3. Найдем значение функции на концах отрезка и в критических точках
у(-1) = -2/3-1 = -1_2/3
у(0) = 0
у(1) = 2/3-1 = -1/3
у(3) = 18-9 = 9 - наибольшее значение на данном отрезке
ответ: при х=3 функция принимает наибольшее значение у(3) = 9