М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
iralubov
iralubov
25.12.2020 22:45 •  Алгебра

Найдите значение выражения 3b/4a-9b^2+36a^2/12ab+6a-3b/2b при а=15 b=21

👇
Ответ:
Siyara1
Siyara1
25.12.2020
3*21/4*15-9*21^2+36*15^2/12*15*21+6*15-3*21/2*21=236,25-3969+212625+90-661,5=208321
4,4(53 оценок)
Открыть все ответы
Ответ:
den4ik143
den4ik143
25.12.2020
Наклонной асимптотой и касательной является прямая вида:
у=kх+b, где k-угловой коэффициент прямой.
Геометрический смысл производной:
k=tgα=f '(x₀) 
чтобы прямые были параллельными, необходимо и достаточно, чтобы соответственные углы были равны, то есть:
α=β ⇒ tgα=tgβ ⇒ k₁=k₂

если функция задаётся дробью в которой в числителе и знаменателе стоят многочлены, то наклонную асимптоту можно найти делением числителя на знаменатель столбиком и то что получится в частном и будет наклонная асимптота (см.фото 1) у=kx+b
y=x+2 ⇒ k₁=1
или в общем виде найти через предел (см. фото 2)

y= \sqrt{x} \\ y'= \frac{1}{2 \sqrt{x_0} } = \frac{1}{2 \sqrt{0.25} } = \frac{1}{2*0.5}=1 \\ y'=tg \ \beta =k _2 \\ k_2=1 \\

Итак, k₁=k₂=1, следовательно данные наклонная асимптота и касательная параллельны - ч.т.д
Докажите, что наклонная асимптота графика функции параллельна касательной к графику в точке с абцисс
Докажите, что наклонная асимптота графика функции параллельна касательной к графику в точке с абцисс
4,7(80 оценок)
Ответ:
Puma20050412
Puma20050412
25.12.2020

Відповідь:

(Понятия «больше» и «меньше» наряду с понятием равенства возникли в связи со счетом предметов и необходимостью сравнивать различные величины. Понятиями неравенства пользовались уже древние греки. Архимед (III в. до н. э.), занимаясь вычислением длины окружности, установил, что «периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых».

Ряд неравенств приводит в своем знаменитом трактате «Начала» Евклид. Он, например, доказывает, что среднее геометрическое двух положительных чисел не больше их среднего арифметического и не меньше их среднего гармонического

Однако все эти рассуждения проводили словесно, опираясь в большинстве случаев на геометрическую терминологию. Современные знаки неравенств появились лишь в XVII— XVIII вв. Знаки < и > ввел английский математик Т. Гарриот (1560—1621), знаки ? и ? французский математик П. Бугер (1698—1758).)

Пояснення:

4,6(21 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ