Ттебе как надо решать на падобии: пример 2. решить неравенстворешение. точки и (корни выражений, стоящих под модулем) разбивают всю числовую ось на три интервала, на каждом из которых следует раскрыть модули.1) при выполняется , и неравенство имеет вид , то есть . в этом случае ответ .2) при выполняется , неравенство имеет вид , то есть . это неравенство верно при любых значениях переменной , и, с учетом того, что мы решаем его на множестве , получаем ответ во втором случае .3) при выполняется , неравенство преобразуется к , и решение в этом случае . общее решение неравенства объединение трех полученных ответов.ответ. .
Заметим, что в системе х встречается только во второй степени. Поэтому, если некоторая пара (х; у) - решение системы, то и пара (-х; у) - решение системы. Так как по заданию система должна иметь только одно решение, то необходимо выполнение условия х=-х. Это достигается только при х=0. Подставляя значение х=0 в систему, получим: Проверим, удовлетворяют ли значения р=1 и р=-1 условию. При р=1: Данный случай не подходит, так как система имеет три решения. При р=-1: Данный случай подходит, система действительно имеет одно решение. Кроме того, можно было построить графики уравнений: - окружность с центром в точке (0; 0) и радиусом 1 - стандартная парабола ветвями вниз с вершиной в точке (0; р). Двигая эту параболу вдоль оси ординат, можно убедиться, что единственное пересечение с окружностью происходит лишь при р=-1. ответ: р=-1
3,5*10=35-6=29 74*29= 2,146
б)3,36*10=33,6-3=30,6
4,8*10=48-7=41 30,6:41=0.7463414634
в)5,2*104=540,8
2,8*105=294 540,8+294=834,8