1. A) Выразим х из первого уравнения системы и подставим во второе: х=3+у 3(3+у)+у=5 9+3у+у=5 4у=-4 у=-1 Подставим найденное значение у в выраженное нами значение х: х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно. 3*2+(-1)=6-1=5 - верно. х=2, у=-1. Б) Выразим у из первого уравнения системы и подставим во второе: у=4-х² 2*(4-х²)-х=7 8-2х²-х=7 2х²+х-1=0 Д=1+8=9 х1=(-1+3):4=1/2 х2=(-1-3):4=-1 у=4-х² При х1=1/2, у1=4-1/4=3 целых 3/4 При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое). Подставляем: 4+(-2)=2 4-2=2 2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.
Определите степень,старший коэффициент и свободный член многочлена
Степенью многочлена называют наибольшую из степеней входящих в него одночленов.
Значит нам нужно найти наибольшую степень при х
не буду вдаваться в объяснения как возводить многочлен в n-ную степень.. но есть правило, по которому, при возведении в степень первый и последний члены будут возводиться в ту степень в которую возводится весь многочлен
попробуем на конкретном примере
мы видим что наибольшая степень при х³⁴
старший коэффициент- это число стоящее перед х в наибольшей степени. В нашем случае это 3¹⁷
и свободный член это 1+1 ( 1 из первого слагаемого и 1 из второго слагаемого) =2
3-x >= 0
x <= 3
7-x >= 0
x <= 7