1) Ищем границы интегрирования -х² + х + 6 = х + 2 -х² = -4 х² = 4 х = +- 2 Теперь ищем интеграл, под интегралом (-х² + х + 6)dx в пределах от -2 до 2, потом интеграл, под интегралом (х +2)dx в пределах от -2 до 2, делаем вычитание и получаем площадь фигуры. а) интеграл =( -х³/3 +х²/2 +6х)| в пределах от -2 до 2=56/3 б)интеграл = (х²/2 +2х)| в пределах от -2 до 2 = 8 S = 56/3 - 8 = 4 2) Ищем границы интегрирования 4х -х² = х -х² +3х =0 х =0 х = 3 Теперь ищем интеграл, под интегралом (4 х -х²) dx в пределах от 0 до 3 потом интеграл, под интегралом хdx в пределах от 0 до 3, делаем вычитание и получаем площадь фигуры. а) интеграл =(4 x²/2 -х³/3)| в пределах от 0 до 3=9 б)интеграл = (х²/2)| в пределах от 0 до 3 = 4.5 S = 9 - 4,5 = 4,5
Тогда модуль будем раскрывать на интервалах: 1) 2) 3)
Значит, на первом интервале строим прямую у=х, сдвинутую на 8 единиц вверх; на втором - прямую у=-х, сдвинутую на 2 единицы вверх; на третьем - прямую у=х.
Прямая y=m параллельна оси х и проходит через точку (m; 0).
Проанализировав взаимное расположение графиков получим: - при m<1 - 1 пересечение - при m=1 - 2 пересечения - при 1<m<5 - 3 пересечения - при m=5 - 2 пересечения - при m>5 - 1 пересечение