Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48
Функция y=log2(x) строго возрастающая, поэтому каждое значение она принимает только 1 раз. ОДЗ: { 2x - 1 > 0 { x - 2a > 0 Получаем { x > 1/2 { x > 2a Если 2a > 1/2, то есть a > 1/4, тогда x > 2a Если 2a < 1/2, то есть a < 1/4, тогда x > 1/2 Решение. Переходим от логарифмов к числам под ними. 2x - 1 = x - 2a x = 1 - 2a Если a > 1/4, то x > 2a 1 - 2a > 2a 4a < 1 a < 1/4 - противоречие, здесь решений нет. Если a < 1/4, то x > 1/2 1 - 2a > 1/2 2a < 1/2 a < 1/4 - все правильно. Если a = 1/4, то получается log2 (2x - 1) = log2 (x - 1/2) log2 (2*(x - 1/2)) = log2 (x - 1/2) 2*(x - 1/2) = x - 1/2 x = 1/2 - не может быть по определению логарифма. Значит, при a = 1/4 тоже решений нет. ответ: Если a >= 1/4, то решений нет. Если a < 1/4, то x = 1 - 2a
Х = 2у + 7