У выражение: (√6+√3)×√12-2√6×√3
1. Раскроем скобки:
(√6+√3)×√12=√12×√6+√12×√3=√72+√36=√72+6
2. Представим 72 как произведение 36 и 2:
√72+6=√36×2+6=√36×√2+6=6√2+6
3. Разберём подробнее 2√6×√3:
2√6×√3=2×√6×3=2×√18
4. Представим √18 как произведение чисел 9 и 2:
2×√18=2×√9×2=2×√9×√2=2×3√2=6√2
5. Подставим полученные значения (действия 2 и 4):
(√6+√3)×√12-2√6×√3=6√2+6 - 6√2=6
ОТВЕТ: 6
В одно действие:
(√6+√3)×√12 - 2√6×√3=√12×√6+√12×√3 - 2√18=√72+√36 - 2√9×2=√72+6
- 2×3√2= √36×2+6 - 6√2=6√2+6-6√2=6
Объяснение:
Объяснение:
а) (у – 2)² =x²-4x+4 ; б) (3х + а)² =9x²+6ax+a² ; в) (8с – 1)(8с + 1) -64c²-1 ; г) (5а + 4b)(5а–4b)=25a²-16b²
2.
(а – 8)² + (64 + 2а)=a²-16a+64+64+2a=a²+-14a+128
3.
а) x² – 81=(x-9)(x+9)
4.
16x²y² – 81a⁴=(4xy)²-(9a²)²=(4xy-9a²)(4xy+9a²)
Составим пропорцию: pa/a=gb/pb=8c/gc.
Из этой пропорции берем пару: pa/a=8c/gc=>p=8/g,
Другая пара дает: gb/pb=8c/gc=>g/p=8/g, g^2=8p.
Подставляем сюда из первой пары g^2=8*8/g=>g^3=64, g=4.
Тогда p=8/4=2.
ответ: p=2, g=4.