Пусть первое число равно х, тогда второе число равно 400-х, т.к. сумма чисел, по условию, равна 400. Примем каждое из чисел, которые будем искать за 100%. По условию, первое число уменьшили на 20%, значит, осталось 100%-20%=80% от первого числа (от х) Второе число уменьшили на 15%, т.е. осталось 100%-15%=85% от второго числа (от 400-х). Для удобства вычислений, переведём проценты в десятичные дроби: 80%=80:100=0,8 85%=85:100=0,85 По условию, когда оба числа уменьшили, то их сумма также уменьшилась на 68. Т.е. она теперь стала равна 400-68=332 Осталось записать уравнение для решения задачи: 0,8х+0,85(400-х)=332 Заметим, что произведения 0,8х - это и есть 80% от числа х 0,85(400-х) - это 85% от числа 400-х Решаем уравнение: 0,8x+0,85*400-0,85x=332 -0,05x+340=332 -0,05x=332-340 -0,05x=-8 x= -8:(-0,05) x=160 - первое число 400-х=400-160=240 - второе число
1) Введем функцию: f(x)=(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3, f(x)=0, (х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0 2) Найдем нули числителя и знаменателя: Числитель: -Все скобки приравниваем к нулю: х∧2+2х+1=0 D<0, f(x)>0 х-любое число x-3=0 x=3 x+2=0 x=-2 Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности), Знаменатель: х∧2+2х-3 не равно 0 D=16 x=-3 x=1 Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности) Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)