По определению среднее арифметическое равно общей сумме членов деленное на их общее количество: откуда сумма n первых членов арифметической последовательности равна в частности отсюда второй член последовательности равен разность арифметической прогрессии равна значит искомая арифметическая прогрессия это арифметическая прогрессия с первым членов 2, и разностью арифметической прогрессии 4 (2, 6, 10, 14, 18, .....) ---------- /////////// маленькая проверочка схождения с формулой суммы членов прогрессии ////////// ответ: арифмитичесская прогрессия с первым членом 2 и разностью прогрессии 4
1) Раскрыть скобки: x^4-10x^3+35x^2-50x+24=0 2) Рассмотреть все числа на которые может делиться число 24. Это: 1,2,3,4,6,8,12,24 После проверки каждого числа подходит только 1. 1^4−10×1^3+35×1^2−50×1+24=0 60-60=0 3) Далее необходимо поделить уравнение x^4-10x^3+35x^2-50x+24=0 на (x-1) => (x^3−9x^2+26x−24)(x−1)=0 4) Повторяем шаги 2 и 3 относительно этого уравнения: x^3−9x^2+26x−24=0 В данном случае ответ будет (х-2) 5)В итоге имеем (x^2−7x+12)(x−2)(x−1)=0 6) Дальше я уже думаю Вы сами знаете как решать. 7) ответ: (x−4)(x−3)(x−2)(x−1)=0 х=1,2,3,4.
ОДЗ: y-не равен -3/4 и 2/3.
15(3х-2)=4(4у+3),
5х-у=3у-2;
45х-30=16у+12,
5х-4у=-2;
45х-16у=42,
5х-4у=-2; /*(-4)
45х-16у=42,
-20х+16у=8;
решаем сложения:
25х=50,
5х-4у=-2;
х=2,
10-4у=-2;
х=2,
-4у=-12;
х=2,
у=3.
ответ:(2;3).