Для геометрической прогрессии со знаменателем Q и первым членом B₁ верно следующее: Bₙ = Qⁿ⁻¹ * B₁, откуда Qⁿ⁻¹ = Bₙ : B₁ = 1024 : 2 = 512. Итак, отмечаем: Qⁿ⁻¹ = 512. Формула для суммы первых n членов прогрессии:
Sₙ = B₁(Qⁿ - 1)/(Q - 1) = B₁(Q * Qⁿ⁻¹ – 1) / (Q – 1) = 2*(512Q - 1) / (Q - 1) = 2046 ⇒
1024Q - 2 = 2046(Q - 1) ⇒ 1024Q - 2 = 2046Q - 2046 ⇒
2046Q - 1024Q = 2046 - 2 ⇒ 1022Q = 2044 ⇒ Q = 2044 : 1022, Q = 2.
Далее Qⁿ⁻¹ = 512 ⇒ 2ⁿ⁻¹ = 512 = 2⁹ ⇒ n - 1 = 9, откуда n = N = 10,
за N заново обозначили количество членов данной прогрессии
ответ: Q = 2, N = 10
Проверка: 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 = 2046
Объяснение:
Поменяем местами 1-ю и 3-ю строки:
Вычитаем из 4-й строки 1-ю строку:
Вычитаем из 3-й строки 1-ю строку, умноженную на 3:
Разделим 2-ю строку на 3:
Суммируем 3-ю и 2-ю строку, умноженную на 7:
Суммируем 1-ю и 2-ю строку, умноженную на -3:
Суммируем 4-ю и 2-ю строку, умноженную на 2:
Поменяем местами 4-ю и 3-ю строки:
Суммируем 3-ю и 1-ю строки:
Суммируем 2-ю и 3-ю строку, умноженную на -1:
Суммируем 4-ю и 3-ю строку, умноженную на -3:
Разделим 4-ю строку на -16/3:
Суммируем 1-ю и 4-ю строку, умноженную на -4/3:
Суммируем 2-ю и 4-ю строку, умноженную на 8/3:
Суммируем 3-ю и 4-ю строку, умноженную на -10/3:
тогда ученик выполнит работу за 64/х, а мастер - 72/(х+4).
Cоставим и решим уравнение
64/х - 72/ (х+4) = 2
64(х+4) - 72*х = 2*х*(х+4)
64х + 256 - 72х = 2х² + 8х
-8х + 256 - 2х² - 8х = 0
2х² + 16х - 256 = 0 / : 2
х² + 8х - 128 = 0
D = 64 + 512 = 576 = 24^2
x1 = ( - 8 + 24)/2 = 16/2 = 8
x2 = ( - 8 - 24)/2 = - 32/2 = - 16 не удовлетворяет условию задачи
Cледовательно, ученик в час изготавливает 8 деталей, а мастер 8+4= 12