ДАНО: АВСDEFA1B1C1D1E1F1 - правильная шестиугольная призма ; АВ = АА1 = 1
НАЙТИ: p ( A ; CB1 )
1) точка А и отрезок СВ1 лежат в плоскости треугольника АВ1С.
Все боковые грани правильной шестиугольной призмы равны.
Значит, АВ1 = В1С => ∆ АВ1С - равнобедренный
Найдём все стороны ∆ АВ1С
2) Рассмотрим ∆ АВ1В ( угол АВВ = 90° ):
По теореме Пифагора:
АВ1² = АВ² + ВВ1²
АВ1² = 1² + 1² = 2
АВ1 = √2
АВ1 = В1С = √2
3) В основании правильной шестиугольной призмы лежит правильный шестиугольник. Все углы правильного шестиугольника равны 120°.
Рассмотрим ∆ АВС ( АВ = ВС ):
По теореме косинусов:
АС² = АВ² + ВС² - 2 × АВ × ВС × cos ABC
AC² = 1² + 1² - 2 × 1 × 1 × cos 120°
AC² = 2 - 2 × ( - 1/2 ) = 2 + 1 = 3
AC = √3
4) B1B перпендикулярен ВН
ВН перпендикулярен АС
Значит, по теореме о трёх перпендикулярах В1Н перпендикулярен АС
Высота в равнобедренном ∆ АВ1С является и медианой и биссектрисой =>
АН = НС = 1/2 × АС = 1/2 × √3 = √3/2
5) Рассмотрим ∆ В1СН ( угол В1НС = 90° ):
По теореме Пифагора:
В1С² = В1Н² + НС²
В1Н² = ( √2 )² - ( √3/2 )² = 2 - 3/4 = 5/4
В1Н = √5/2
Опустим из точки А перпендикуляр АМ на отрезок В1С. Соответственно, АМ = р ( А ; В1С )
6) Найдём площадь ∆ В1АС:
S b1ac = 1/2 × AC × B1H
С другой стороны, S b1ac = 1/2 × B1C × AM
Приравняем площади и получим:
1/2 × АС × В1Н = 1/2 × В1С × АМ
АС × В1Н = В1С × АМ
АМ =
Значит, p ( А ; В1С ) = √30/4
ОТВЕТ: √30 / 4
Объяснение:
N-й степенью ненулевого числа называется произведение n множителей, каждый из которых равен заданному числу.
Число, которое умножают, называется основанием степени, число множителей является показателем степени.
Само число считают первым степенью числа и показатель степени не пишут.
Любой степень числа 1 равен единице ((.
Нулевой степень числа, отличного от нуля, равна единице: .
Степень с отрицательным показателем ненулевого числа равна числу, обратному степенью с противоположным показателем этого числа: .
Возведение в степень имеет следующие свойства:
1) Произведение степеней с одинаковым основанием равен степенью с той же основой и показателем степени, равным сумме показателей степени множителей: .
Чтобы умножить степени с одинаковой основой, нужно основу оставить без изменений, а показатели степени добавить.
2) Доля степеней с одинаковым основанием равен степенью с той же основой и показателем степени, равным разности показателей степени множителей: .
Чтобы разделить степени с одинаковой основой, нужно основу оставить без изменений, а от показателя степени делимого вычесть показатель степени делителя.
3) Степень степени равен степенью с той же основой и показателем степени, равным произведению показателей степени: .
Чтобы поднять степень в степень, нужно основу оставить без изменений, а показатели степени умножить.
4) Степень произведения множителей равен произведению степеней с тем же показателем каждого множителя: .
Чтобы поднять произведение множителей в степени, надо каждый множитель преподнести в эту степень и результаты перемножить.
5) Чтобы поднять дробь в степень, нужно поднести к этому степени и числитель, и знаменатель:.
Стандартным видом числа называется его запись в виде произведения некоторого числа, большего или равного единице, но меньшего от десяти, на степень числа десять