Відповідь:
А,1 а)х=√16/25=4/5 б)3х²-15х=0 скоротимо на 3 отримаємо:х²-5х=0, х(х-5)=0 х1=0,х2=5 в)5х2+20=0 скоротимо , отримаємох²+4=0 коренів немає, √-4 не можливий
А2 а)Отримаємо квадратне рівння 3х²+2х-8=0 знайдемо корені через дискримінант , Д=10 , х1=-2 , х2=4/3 , б (х-1)²-4=0 , отримаємо квадратне рівння х²-2х-3=0 знайдемо корені за теоремою Вієтах1+х2=2, х1*х2=-3, х1=3,х2=-1 А3 а)х²-27=0 х²=27 , х=3√3 б) х=√3
В1)х²-8х+12=0 (х-4)²-4=0 б)х²+2х-15=0 (х+1)²-16=0
Пояснення:
Відповідь:
А,1 а)х=√16/25=4/5 б)3х²-15х=0 скоротимо на 3 отримаємо:х²-5х=0, х(х-5)=0 х1=0,х2=5 в)5х2+20=0 скоротимо , отримаємох²+4=0 коренів немає, √-4 не можливий
А2 а)Отримаємо квадратне рівння 3х²+2х-8=0 знайдемо корені через дискримінант , Д=10 , х1=-2 , х2=4/3 , б (х-1)²-4=0 , отримаємо квадратне рівння х²-2х-3=0 знайдемо корені за теоремою Вієтах1+х2=2, х1*х2=-3, х1=3,х2=-1 А3 а)х²-27=0 х²=27 , х=3√3 б) х=√3
В1)х²-8х+12=0 (х-4)²-4=0 б)х²+2х-15=0 (х+1)²-16=0
Пояснення:
2a1+d(n–1)
Sn = • n
2
8+d(n–1)
• n = n^2 + 3n |•2
2
n•(8+dn–d) = 2•(n^2+3n)
8n+dn^2–dn = 2n^2 + 6n
2n^2–dn^2+dn–2n = 0
2n(n–1)–dn(n–1) = 0
(n–1)(2n–dn) = 0
n–1=0; 2n–dn = 0
n=1; n(2–d) = 0
n=0; 2–d=0
d=2
ответ: d=2