Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
1) 1
2) 1
Объяснение:
1)
2^367=((2^8)^45)*2^7=((17*15+1)^45)*128
Выражение в скобках при делении на 17 дает остаток 1.
Значит 2^367 при делении на 17 имеет тот же остаток, что и 128
128=7*17+9
2^367+43 при делении на 17 имеет тот же остаток, что 9+43=52
52=17*3+1.
Значит , ответ: 1
2)
2^1995+5*10^3
5*10^3 =5000=1666*3+2 (остаток от деления на 3 равен 2)
8*16^498=8*(5*3+1)^498
Также как и в предыдущей задаче остаток равен остатку от деления 8 на 3, т.е. равен 2.
Значит остаток суммы такой же как от деления 4 на 3, т.е.
равен 1.