Уравнение квадратной параболы в общем виде: у = ах² + вх + с Найдём коэффициенты а, в, с Подставим координаты точки А -6 = а· 0² + в·0 + с → с = -6 Подставим координаты точки В -9 = а·1² + в·1 - 6 → а + в = -3 (1) Подставим координаты точки С 6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2) Подставим (2) а (1) а + 2 - 6а = -3 → а = 1 Из (2) получим в = -4 Итак, мы получили уравнение параболы: у = х² - 4х - 6 Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2 Ординату вершины параболы найдём, подставив в уравнение параболы х = m = 2 у = 2² - 4 · 2 - 6 = -10 ответ: вершиной параболы является точка с координатами (2; -10)
95 мин=1 7/12 ч 12 ч-1 7/12 ч=10 5/12 ч=125/12 ч (двигалась лодка) х - собственная скорость лодки х+2 - скорость по течению х-2 - скорость против течения 50/(х+2) - время движения по течению 50/(х-2) - время против течения 50/(х+2)+50/(х-2)=125/12 (умножим на 12(х+2)(х-2)) 600(х-2)+600(х+2)=125(х+2)(х-2) 600х-1200+600х+1200=125(х2-2х+2х-4) 1200х=125х2-500 125х2-1200х-500=0 (сократим на 25) 5х2-48х-20=0 D=48*48-4*5*(-20)=2304+400=2704 Корень из D=52 х"=(48-52):2*5=-4:10=-2/5 (не подходит по условию) х=(48+52):10=100:10=10 (км/ч) ответ: собственная скорость лодки 10 км/ч
S=∫2,3(x^2)dx=|3,2(x^3/3)=3^3/3-2^3/3=9-8/3=19/3