1. Из условия нам ясно, что a(4)/a(1)=7 и a(6)*a(3)=220. Мы знаем, что формула n-члена арифметической прогрессии выглядит следующим образом: a(n)=a(1)+(n-1)*d. Воспользовавшись этим можем составить следующие соотношения: =7 и (a(1)+5*d)*(a1+2d)=220 У нас получается система из двух уравнений. Решаем её. Получаем, что a(1)=2 или a(1)=-2, d=2a но так как прогрессия убывает, то подходит a(1)=-2 ОТВЕТ: -2
1. Из условия нам ясно, что a(4)/a(1)=7 и a(6)*a(3)=220. Мы знаем, что формула n-члена арифметической прогрессии выглядит следующим образом: a(n)=a(1)+(n-1)*d. Воспользовавшись этим можем составить следующие соотношения: =7 и (a(1)+5*d)*(a1+2d)=220 У нас получается система из двух уравнений. Решаем её. Получаем, что a(1)=2 или a(1)=-2, d=2a но так как прогрессия убывает, то подходит a(1)=-2 ОТВЕТ: -2
8х -10=у
у=4х² -3х
8х-10=4х² -3х
4х² -11х+10=0
D=11² -4*4*10=121-160= -39<0 - решений нет