для меня это самое понятное... надеюсь
Объяснение:
Предположим, что нам нужно составить квадратное уравнение, корнями которого были бы числа x1 и x2. Очевидно, что в качестве искомого уравнения можно выбрать уравнение
a(х — x1)(х — x2) = 0, (1)
где а — любое отличное от нуля действительное число. С другой стороны, каждое квадратное уравнение с корнями x1 и x2 можно записать в виде (1).
Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x1 и x2 имеют уравнения вида (1) и только, они.
Пример. Составить квадратное уравнение, корни которого равны 1 и — 2.
ответ. Корни 1 и —2 имеют все квадратные уравнения вида
а(х — 1)(х + 2) = 0,
или
ах2 + ах — 2а = 0,
где а — любое отличное от нуля действительное число. Например, при а = 1 получается уравнение
х2 + х — 2 = 0.
Объяснение:
Проведем доказательство тождества следующим образом:
- проведем равносильные преобразования левой части доказываемого тождества;
- если в итоге преобразований левая часть примет ту же форму что и правая часть - тождество доказано.
Итак - левая часть:
Сгруппируем следующим образом:
Воспользуемся формулой суммы синусов:
Поочередно сложим группы внутри скобок:
Тогда вся левая часть примет вид:
для преобразования суммы косинусов в скобках воспользуемся такой формулой:
Выражение примет вид:
В результате преобразований левая часть приняла тот же вид что и правая.
Тождество доказано.
1) АВ{0;4;-2} , ВС{6;-3;0}
Cosα = (0-12 +0)/√(0 + 16 + 4)*√(36 +9 +0) = -12/√20*√45 = -12/30 = -2/5
→ → →
2) Даны векторы а {0;2-2}, в {0;-2;3}, с{4;-5;2}
→ → → →
Найти вектор р = 4а -2в +3с
→ → →
4a{0, 8, -8}, -2b{ 0, 4, -6}, 3c{ 12, -15, -6)
→
p{ 12, -3, -20}