М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SofiDu
SofiDu
25.05.2020 04:26 •  Алгебра

Докажите неравенство: b(a^2+1)+a(b^2+1) ≥ 4ab (a≥0,b≥0)

👇
Ответ:
lolo2005
lolo2005
25.05.2020
A^2b+b+ab^2+a-4ab>=0 (1)
(a^2b-2ab+b)+(ab^2-2ab+a)>=0
b(a^2-2a+1)+a(b^2-2b+1)>=0
a(b-1)^2+b(a-1)^2>=0 (2)

a>=0
(b-1)^2>=0
a(b-1)^2>=0 (3)

b>=0
(a-1)^2>=0
b(a-1)^2>=0 (4)

Исходя из (3) и (4) доказывается (2), а значит, и (1).
4,5(73 оценок)
Открыть все ответы
Ответ:

Объяснение:

1.

(17³ + 16³) / 33- 17 × 16 = (4913 + 4096) / 33 - 272 = 9009 / 33 - 272 = 273 - 272 = 1

2.

a) 3b³ - 24 = 3(b³ - 8) = 3(b - 2)(b² + 2b + 4)

b) a² - 8ay + 16y² + 3a - 12y = (a - 4y)² + 3(a - 4y) = (a - 4y)(a - 4y + 3)

3.

a) (2y - 5)² + (3y - 5)(3y + 5) + 40y = 4y² - 20y + 25+ 9y² - 25 + 40y = 13y² + 20y

b) При y = -2:

        13 × (-2)² + 20 × (-2) = 52 - 40 = 12

4.

x - y = 3, x² - y² = 87

x = 3 + y, x² - y² = 87

(3 + y)² - y² = 87

9 + 6y + y² - y² = 87

9 + 6y = 87

6y = 87 - 9

6y = 78

y = 13

x = 3 + 13

x = 16

(x, y) = (16, 13)

4,7(69 оценок)
Ответ:
marishakfine
marishakfine
25.05.2020

Таблица точек

 x y

-3.0 -18

-2.5 -8.1

-2.0 -2

-1.5 1.1

-1.0 2

-0.5 1.4

0 0

0.5 -1.4

1.0 -2

1.5 -1.1

2.0 2

2.5 8.1

3.0 18

 Точка пересечения графика функции с осью координат Y:  

График пересекает ось Y, когда x равняется 0: подставляем x=0 в x³-3x.

у =0³-3*0 = 0,

Результат: y=0. Точка: (0; 0.

Точки пересечения графика функции с осью координат X:  

График функции пересекает ось X при y=0, значит, нам надо решить уравнение:  

x³-3x = 0

Решаем это уравнение и его корни будут точками пересечения с X:

x (х²-3) = 0,

х1 = 0,  х2,3 = +-√3.

Результат: y=0. Точки: (0; -√3), (0; 0) и (0; √3).

Экстремумы функции:  

Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:  

y'=3x² – 3 = 0

Решаем это уравнение и его корни будут экстремумами:  

3(х²-1) = 0,

х1 = 1,  х2  = -1.

Результат: y’=0. Точки: (-1; 2) и (1; -2). Это критические точки.

Интервалы возрастания и убывания функции:  

Найдем значения производной между критическими точками:  

x = -2 -1 0          1             2

y' = 9 0 -3          0               9.  

• Минимум функции в точке: х = -1,

• Максимум функции в точке: х = 1.

• Возрастает на промежутках: (-∞; -1) U (1; ∞)  

• Убывает на промежутке: (-1; 1)  

Точки перегибов графика функции:  

Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции:  

y'' = 6x  = 0

Отсюда точка перегиба х = 0

Точка: (0; 0).

Интервалы выпуклости, вогнутости:  

Находим знаки второй производной на промежутках (-∞; 1) и (1; +∞).

                             х =     -1        0         1

                             y'' =    -6        0          6.

Где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый.

• Вогнутая на промежутках: (0; ∞),

• Выпуклая на промежутках: (-∞; 0)  

Вертикальные асимптоты – нет.  

Горизонтальные асимптоты графика функции:  

Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:  

• lim x3-3x, x->+∞ = ∞, значит, горизонтальной асимптоты справа не существует

• lim x3-3x, x->-∞ = -∞, значит, горизонтальной асимптоты слева не существует

Наклонные асимптоты графика функции:  

Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:  

• lim x3-3x/x, x->+oo = oo, значит, наклонной асимптоты справа не существует.

• lim x3-3x/x, x->-oo = oo, значит, наклонной асимптоты слева не существует.

Четность и нечетность функции:  

Проверим функцию -  четна или нечетна с соотношений f(-x)=f(x) и f(-x)=-f(x). Итак, проверяем:  

• (-x3)-3(-x) =  -x3+3x   нет,

• (-x3)-3(-x) = -(x3-3x) – да, значит, функция является нечётной.


Решить. если можно, то подробно
4,6(25 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ