ОДЗ:

Решаем каждое неравенство:
⇒
⇒

⇒
⇒

Подмодульные выражения обращаются в 0 в точках
и 
Это точки делят числовую прямую на три промежутка.
Раскрываем знак модуля на промежутках:
(-∞;-4]
|x+4|=-x-4
|x|=-x
⇒
⇒ x < 1
решение неравенства (-∞;-4]
(-4;0]
|x+4|=x+4
|x|=-x
⇒
⇒ x < -2 или x > 1
решение неравенства (-4;-2)
(0;+∞)
|x+4|=x+4
|x|=x
⇒
⇒ x > 1
решение неравенства (1;+∞]
Объединяем ответы трех случаев:
при 
ОДЗ:


Решаем неравенство: 


Два случая:
если основание логарифмической функции >1, то она возрастает и большему значению функции соответствует большее значение аргумента
⇒
⇒ ![\left \{ {{x\in (-\infty;-3) \cup(1;+\infty)} \atop {x\in(-\infty;-4]\cup(1;5)}} \right.](/tpl/images/1360/8793/82812.png)
второе неравенство решаем на промежутках так:
(-∞;-4]
⇒
⇒
⇒ (-3;-1)
не принадлежат (-∞;-4]
на (-4;0]
⇒
⇒ x < -5 или x > 1
не принадлежат (-4;0]
(0;+∞)
⇒
⇒
⇒
о т в е т этого случая 
если основание логарифмической функции 0 < a < 1, то она убывает и большему значению функции соответствует меньшее значение аргумента
⇒
⇒ ![\left \{ {{x\in (-3;-1-\sqrt{3}) \cup(-1+\sqrt{3};1)} \atop {x\in(-\infty;-4]\cup(-4;0]\cup(5;+\infty)}} \right.](/tpl/images/1360/8793/ac205.png)
второе неравенство решаем на промежутках так:
(-∞;-4]
⇒
⇒
⇒
(-∞;-3)U(1;+∞)
о т в е т. (-∞;-4]
на (-4;0]
⇒
⇒ -5 < x < 1
о т в е т. (-4;0]
(0;+∞)
⇒
⇒
⇒
о т в е т этого случая 
С учетом ОДЗ получаем окончательный ответ:
Объяснение:
Разложим на множители выражение в числителе и знаменателе.
\begin{gathered}y=\frac{24-12x}{2x-x^2}\\y=\frac{-12(x-2)}{-x(x-2)}\\\left \{ {{y=\frac{12}{x} } \atop {x\neq 2}} \right.\end{gathered}
y=
2x−x
2
24−12x
y=
−x(x−2)
−12(x−2)
{
x
=2
y=
x
12
Это гипербола, которая лежит в 1 и 3 четверти и имеет асимптоты, которыми являются оси координат.
Отметим 2 точки, которые принадлежат этой функции на координатной плоскости для более точно построения.
x=12 --> y=1; (12;1)
x=1 --> y=12; (1;12)
И проведём через них нашу гиперболу.