Так как находится под модулем, то знак этого трехчлена будет всегда (+), значит при определении промежутка решений неравенства его можно не учитывать, но так как неравенство строгое, то корни данного трехчлена не будут входить в промежуток решения. находим корни: теперь определяем x^3>0: если x<0, то x^3<0 если x>0, то X^3>0 значит промежутком решения данного неравенства является: x∈(0;2) и (2;8) и (8;+oo) считаем на интервале (-1;7] неравенство верно при x=1; x=3; x=4; x=5; x=6; x=7 - всего 6 целых решений ответ: 6 решений
Пусть первое число равно х, тогда второе число равно 400-х, т.к. сумма чисел, по условию, равна 400. Примем каждое из чисел, которые будем искать за 100%. По условию, первое число уменьшили на 20%, значит, осталось 100%-20%=80% от первого числа (от х) Второе число уменьшили на 15%, т.е. осталось 100%-15%=85% от второго числа (от 400-х). Для удобства вычислений, переведём проценты в десятичные дроби: 80%=80:100=0,8 85%=85:100=0,85 По условию, когда оба числа уменьшили, то их сумма также уменьшилась на 68. Т.е. она теперь стала равна 400-68=332 Осталось записать уравнение для решения задачи: 0,8х+0,85(400-х)=332 Заметим, что произведения 0,8х - это и есть 80% от числа х 0,85(400-х) - это 85% от числа 400-х Решаем уравнение: 0,8x+0,85*400-0,85x=332 -0,05x+340=332 -0,05x=332-340 -0,05x=-8 x= -8:(-0,05) x=160 - первое число 400-х=400-160=240 - второе число
находим корни:
теперь определяем x^3>0:
если x<0, то x^3<0
если x>0, то X^3>0
значит промежутком решения данного неравенства является:
x∈(0;2) и (2;8) и (8;+oo)
считаем на интервале (-1;7] неравенство верно при x=1; x=3; x=4; x=5; x=6; x=7 - всего 6 целых решений
ответ: 6 решений