М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vanyabond2611
vanyabond2611
29.09.2020 17:01 •  Алгебра

Имеется два сплава. первый содержит 10% никеля, а второй 25% никеля. из этих двух сплавов получили третий сплав массой 150 кг, содержащий 20% никеля. на сколько килограммов масса первого сплава меньше массы второго?

👇
Ответ:
vanyalebedev1248
vanyalebedev1248
29.09.2020
Масса 1 сплава =  х кг , масса 2 сплава  = у кг .
 Масса 3 сплава равна  х+у=150 кг .
Масса никеля в 1 сплаве = 0,1х кг .
Масса никеля во  2 сплаве = 0,25у кг .
Масса никеля в 3 сплаве равна 0,2*150=30 кг .

\left \{ {{x+y=150\qquad \; \; \; } \atop {0,1x+0,25y=30|\cdot 100}} \right. \; \; \left \{ {{x=150-y} \atop {10x+25y=3000|:5}} \right. \; \; \left \{ {{x=150-y} \atop {2x+5y=600}} \right. \\\\ \left \{ {{x=150-y\qquad \; \; \; } \atop {2(150-y)+5y=600}} \right. \; \; \left \{ {{x=150-y} \atop {300+3y=600}} \right. \; \; \left \{ {{x=150-y} \atop {3y=300}} \right. \; \; \left \{ {{x=50} \atop {y=100}} \right.

Масса 1 сплава на 100-50=50 кг меньше массы 2 сплава .
4,5(31 оценок)
Открыть все ответы
Ответ:
ElenaComarova
ElenaComarova
29.09.2020

Алгебра есть не что иное, как математический язык, при для

обозначения отношений между количествами”.

И. Ньютон


Алгебра – часть математики, которая изучает общие свойства действий над

различными величинами и решение уравнений, связанных с этими действиями.

Решим задачу: “Возрасты трех братьев 30, 20 и 6 лет. Через сколько лет

возраст старшего будет равен сумме возрастов обоих младших братьев?”

Обозначив искомое число лет через х, составим уравнение: 30 + х = (20+х) +

(6 + х) откуда х = 4. Близкий к описанному метод решения задач был известен

еще во II тысячелетии до н.э. писцам Древнего Египта (однако они не

применяли буквенной символики). В сохранившихся до наших дней

математических папирусах имеются не только задачи, которые приводят к

уравнениям первой степени с одним неизвестным, как в задаче о возрасте

братьев, но и задачи, приводящие к уравнениям вида ах2 = b.

Еще более сложные задачи умели решать с начала II тысячелетия до н.э. в

Древнем Вавилоне; в математических текстах, выполненных клинописью на

глиняных пластинках, есть квадратные и биквадратные уравнения, системы

уравнений с двумя неизвестными и даже простейшие кубические уравнения. При

этом вавилоняне также не использовали букв, а приводили решения “типовых”

задач, из которых решения аналогичных задач получались заменой числовых

данных. В числовой форме приводились и некоторые правила тождественных

преобразований. Если при решении уравнения надо было извлекать квадратный

корень из числа а, не являющегося точным квадратом, находили приближенное

значение корня х: делили а на х и брали среднее арифметическое чисел х и

а/х.

Для таких уравнений Диофант искал лишь положительные рациональные решения.

С VI в. центр математических исследований перемещается в Индию и Китай,

страны Ближнего Востока и Средней Азии. Китайские ученые разработали метод

последовательного исключения неизвестных для решения систем линейных

уравнений, дали новые методы приближенного решения уравнений высших

степеней. Индийские математики использовали отрицательные числа и

усовершенствовали буквенную символику. Однако лишь в трудах ученых Ближнего

Востока и Средней Азии алгебра оформилась в самостоятельную ветвь

математики, трактующую вопросы, связанные с решением уравнений. В IX в.

узбекский математик и астроном Мухаммед ал-Хорезми написал трактат “Китаб

аль-джебр валь-мукабала”, где дал общие правила для решения уравнений

первой степени. Слово,,алъ-джебр" (восстановление), от которого новая наука

алгебра получила свое название, означало перенос отрицательных членов

уравнения из одной его части в другую с изменением знака. Ученые Востока

изучали и решение кубических уравнений, хотя не сумели получить общей

формулы для их корней.

В Западной Европе изучение алгебры началось в XIII в. Одним из крупных

математиков этого времени был итальянец Леонардо Пизанский (Фибоначчи) (ок.

1170 – после 1228). Его “Книга абака” (1202) – трактат, который содержал

сведения об арифметике и алгебре до квадратных уравнений включительно (см.

Числа Фибоначчи). Первым крупным самостоятельным достижением

западноевропейских ученых было открытие в XVI в. формулы для решения

кубического уравнения. Это было заслугой итальянских алгебраистов С. Дель

Ферро, Н. Тарталья и Дж. Кардано. Ученик последнего – Л. Феррари решил и

уравнение 4-й степени. Изучение некоторых вопросов, связанных с корнями

кубических уравнений, привело итальянского алгебраиста Р. Бомбелли к

открытию комплексных чисел.

4,6(42 оценок)
Ответ:
Ptigran
Ptigran
29.09.2020
Ну во-первых. Это уравнение квадратное на первый взгляд, ведь квадрат же у нас есть. Тем не менее, это неверно. Если коэффициент при x^2 обратится в 0, то уравнение вообще не будет квадратным, оно будет линейным. Поэтому, рассмотрим вначале этот случай.
1)Пусть p - 1 = 0
             p = 1
 Тогда уравнение обретает вид: -2x + 1 = 0. Уравнение это всегда имеет один корень, поэтому  p =1 нам подходит.
2)Пусть p не равен 1. Тогда уравнение будет всегда квадратным. Когда же квадратное уравнение имеет корни? А тогда, когда его дискриминант неотрицателен.
D = 4p^2 - 4p(p-1) = 4p^2 - 4p^2 + 4p = 4p
Условие задачи будет выполнено, если D >= 0
4p >= 0
p >= 0 - это ответ задачи.
4,5(97 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ