Для начала заметим, что в первом уравнении системы обе части строго положительны, поскольку степень положительного числа - всегда число положительное, что мы и видим. Значит, я могу прологарифмировать обе части данного равенства. Со вторым равенством поступим аналогично. Почему же здесь обе части положительны? Это происходит вследствие того, что x и y всегда положительны(поскольку иначе быть не может из-за того, что они входят под знаком логарифма в первом равенстве). Значит, основания степеней положительны, а потому, и степени положительны. Поэтому имеем право прологарифмировать обе части. Сделаем это. При этом будем использовать свойства логарифмов.
Напомню, что в процессе мы использовали то, что степень выражения под логарифмом я могу спустить и сделать его множителем.
Теперь введём замену переменных. Пусть lg (3x) = u, lg(5y) = v. Выразим сами логарифмы lg x и lg y через эти переменные. Для этого используем правило логарифма произведения: lg(3x) = lg3 + lg x, откуда lg x = lg(3x) - lg3 = u - lg3 Аналогично, lg(5y) = lg5 + lg y, откуда lg y = lg(5y) - lg 5 = v - lg5 Теперь подставляем это в нашу систему:
Теперь решаем эту систему. Она заметно проще предыдущей. Как решаем? Обычным путём выражения одной переменной через другую. Допустим, выразим u через v из второго уравнения и подставим в первое.
Далее производим подстановочку в первое уравнение, которое упрощаем обычными средствами:
Сразу находим, что и u = 0. Далее возвращаемся к обычным переменным: lg(3x) = 0, откуда и lg(5y) = 0, откуда
Пойдем от противного, предположим что существует такая дробь которая после определенного количества секунд при которых будут выполняться сказанные выше условия будет сокращаться на 11.
1. через н секунд дробь примет вид (н+1)/(3+7*н) . притом и (н+1) и (3+7*н) делятся на 11.
2. так как оба числа кратны 11, то и их разность будет кратна 11, что легко видеть так как числа отличаются на число кратное 11. Также нам не мешает домножить (н+1) на любое натурально число и вычесть из него знаменатель, при этом результат тоже будет кратен 11. Почему так: потому что домножив (н+1) на что-либо оно все равно будет делиться на 11, так как делилось на него изначально, а разность как уже было расмотренно выше тоже будет числом кратным 11.
3. опираясь на доказанное в пункте 2 умножим (н+1) на 7 и вычтем из того что получится знаменатель, т. е (3+7*н) .
7*(н+1)-(3+7*н) =7*н+7-3-7*н=7-3=4
но так же в пункте 2 было рассмотрено что результат этого должен делиться на 11, но 4 на 11 не делиться. Мы пришли к противоречию, значит конца света бояться не надо)
Так как AK - биссектриса, то: при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки: ищем длины AB и AC: используем формулу: находим координаты точки K: теперь определим вид треугольника для этого используем теорему косинусов: для начала найдем длину BC: вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B подставим значения: cosB<0 поэтому угол тупой и треугольник тупоугольный ответ: треугольник тупоугольный
Со вторым равенством поступим аналогично. Почему же здесь обе части положительны? Это происходит вследствие того, что x и y всегда положительны(поскольку иначе быть не может из-за того, что они входят под знаком логарифма в первом равенстве). Значит, основания степеней положительны, а потому, и степени положительны. Поэтому имеем право прологарифмировать обе части. Сделаем это. При этом будем использовать свойства логарифмов.
Напомню, что в процессе мы использовали то, что степень выражения под логарифмом я могу спустить и сделать его множителем.
Теперь введём замену переменных. Пусть lg (3x) = u, lg(5y) = v. Выразим сами логарифмы lg x и lg y через эти переменные. Для этого используем правило логарифма произведения:
lg(3x) = lg3 + lg x, откуда lg x = lg(3x) - lg3 = u - lg3
Аналогично,
lg(5y) = lg5 + lg y, откуда lg y = lg(5y) - lg 5 = v - lg5
Теперь подставляем это в нашу систему:
Теперь решаем эту систему. Она заметно проще предыдущей. Как решаем? Обычным путём выражения одной переменной через другую. Допустим, выразим u через v из второго уравнения и подставим в первое.
Далее производим подстановочку в первое уравнение, которое упрощаем обычными средствами:
Сразу находим, что и u = 0.
Далее возвращаемся к обычным переменным:
lg(3x) = 0, откуда
lg(5y) = 0, откуда
Таким образом, решением системы является пара