М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
supersattarova
supersattarova
08.10.2021 03:53 •  Алгебра

Якого найменшого значення набуває вираз x квадрат+12x+48

👇
Ответ:
denbabichev96
denbabichev96
08.10.2021
y=x^2+12x+48

x(верш)=-\frac{b}{2a}=-\frac{12}{2}=-6

y(верш)=(-6)^2-12\cdot 6+48=12 =y(наименьшее)
4,7(33 оценок)
Ответ:
vikazelenaya1
vikazelenaya1
08.10.2021
Розв'язок на фото нижче: 

Якого найменшого значення набуває вираз x квадрат+12x+48
4,6(43 оценок)
Открыть все ответы
Ответ:
ksdaga
ksdaga
08.10.2021
Y = x³ - 3x² - x + 5
Запишем уравнения касательной в общем виде:
yk = y₀ + y'(x₀)(x - x₀)
По условию задачи x₀ = 0, тогда y₀ = 5
Теперь найдем производную:
y' = (x³ - 3(x²) - x + 5)' = 3x² - 6x - 1
следовательно:
f'(0) = -1  - 6* 0+3* 0² = - 1
В результате имеем:
y = y₀ + y'(x₀)(x - x₀)
y = 5 -1*(x - 0)
или
y = 5 - x
2.  Уравнение нормали имеет вид: y(x) = [(-1)/f`(x₀)]*(x – x₀) + f(x₀) Подставляя в уравнение нормали  уже найденные f(x₀) = 5 и 
f`(x₀) = f`(0) = - 1 , получаем искомое уравнение нормали: y(x) = 1*x + 5
y(x) = x + 5
4,7(28 оценок)
Ответ:
markvT
markvT
08.10.2021

m= 0 и m =0,25

Объяснение:

Дана функция:

y=3·|x+8|–x²–14·x–48.

Так как в функции участвует модульное выражение, то рассмотрим в зависимости знака под модульного выражения.

1) x+8≤0 ⇔ x ≤ –8 ⇒ |x+8|= –(x+8). Тогда левый кусок функции имеет вид:

y₁=3·|x+8|–x²–14·x–48=3·(–(x+8))–x²–14·x–48= –3·x–24–x²–14·x–48 =

= –x²–17·x–72 – это парабола, у которой ветви направлены вниз и с вершиной в точке

x= –(–17)/(2·(–1))= –8,5. Значение в вершине:

y₁(–8,5)= –( –8,5)²–17·(–8,5)–72=0,25.

Чтобы построит график определим нули параболы:

–x²–17·x–72=0 ⇔ x²+17·x+72=0 ⇔ (x+8)·(x+9)=0 ⇔

⇔ x₁ = –9 (<–8), x₂ = –8 (=–8).

2) x+8≥0 ⇔ x≥–8 ⇒ |x+8|=x+8. Тогда правый кусок функции имеет вид:

y₂=3·|x+8|–x²–14·x–48=3·(x+8)–x²–14·x–48=3·x+24–x²–14·x–48=

= –x²–11·x–24 – это парабола, у которой ветви направлены вниз и с вершиной в точке

x= –(–11)/(2·(–1))= –5,5. Значение в вершине:

y₂(–5,5)= –(–5,5)²–11·(–5,5)–24=6,25.

Чтобы построит график определим нули параболы:

–x²–11·x–24=0 ⇔ x²+11·x+24=0 ⇔ (x+8)·(x+3)=0 ⇔

⇔ x₃ = –8 (=–8), x₄ = –3 (>–8).

ответом будут (прямые зелёного цвета) только: m= 0 и m =0,25.  

Точки пересечения прямых y=m (при m= 0 и при m =0,25) с графиком функции отмечены красными точками.


Постройте график функции y=3lx+8l-x^2-14x-48 и определите, при каких значениях m прямая y=m имеет с
4,7(21 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ