▪Сравним: (4/3)√2 и (6/5)√2, т.к. в левой и правой части √2 = √2, значит будем сравнивать: (4/3) и (6/5) ▪чтобы сравнить 4/3 и 6/5 приведем дроби к НОЗ = 15: 4/3 = 20/15 6/5 = 18/15 ▪сравним: 20/15 > 18/15 (т.к. знаменатели равны сравниваем только числители 20>18)
▪Вывод:
20/15 > 18/15, значит 4/3 > 6/5 соответственно (4/3)√2 > (6/5)√2, (1/3)√32 > (1/5)√72 М > N
Пусть A1,A2,...,An,n- точек, никакие три из которых не лежат на одной прямой. Выясним, сколько прямых проходит через точку A1 и оставшиеся точки. Так как число оставшихся точек равно n – 1 и через каждую из них и точку A1 проходит одна прямая, то число прямых будет равно n – 1. Всего точек n и через каждую из них проходит n – 1 прямая, то число посчитанных прямых будет равно n(n – 1). Каждую прямую посчитали дважды и поэтому число прямых, проходящих через различные пары из n данных точек, равно n(n-1)/2. . Третью точку можно выбрать Тогда число прямых, проходящих через эти три точки, равно (n(n - 1)(n - 2))/6 . Или иначе это число сочетаний из n по 3,которое равно n!/(n-3)!*3!=n(n-1)(n-2)*(n-3)!/(1*2*3*(n-3)!)=(n(n-1)(n-2)/6
1 вариант(не особо уверенна,может быть не верно) AD=DC,как проведенные высоты/медианы/биссектрисы из равных углов при основании(Не знаю можно ли это отнести к этому случаю).Угол DAM=углу DCM как углы при основании равнобедренного треугольника,отсеченные равными отрезками AD и CD.AM=MC,как отрезки делимые медианой треугольника.Из этого следует равенство треугольников AMD и CMD по 1 признаку
2 вариант(этот точно верный) В треугольниках AMD и CMD MD-является общей стороной.В равнобедренном треугольнике медиана,является высотой и биссектрисой,из чего можно сделать вывод,что углы AMD и CMD равны,так как они прямые.AM=MC,как отрезки делимые медианой треугольника.Треугольники AMD и CMD равны по 1 признаку равенства
N = (1/5)√72 = 1/5 × √36 × √2 = 1/5 × √(6^2) × √2 = 1/5 × 6√2 = (6/5)√2;
▪Сравним:
(4/3)√2 и (6/5)√2,
т.к. в левой и правой части √2 = √2, значит будем сравнивать:
(4/3) и (6/5)
▪чтобы сравнить 4/3 и 6/5 приведем дроби к НОЗ = 15:
4/3 = 20/15
6/5 = 18/15
▪сравним:
20/15 > 18/15
(т.к. знаменатели равны сравниваем только числители 20>18)
▪Вывод:
20/15 > 18/15, значит
4/3 > 6/5 соответственно
(4/3)√2 > (6/5)√2,
(1/3)√32 > (1/5)√72
М > N