неравенство. Выпишите правильный ответ.
а) х 2 + 5х = 0 в) х 2 – 2х < 7
б) – 6х – 8 > х + 3 г) х + 9 = 4х – 16
2. Выясните, решением какого неравенства является число 2.
Выпишите правильный ответ.
а) х 2 – х < 0 в) х 2 + х – 3 > 0
б) – х 2 + 4х – 5 > 0 г) х 2 – 2х < 0
3. Решите неравенство методом интервалов и выпишите
верный ответ: (х – 5)(х + 3) > 0
а)
в)
– 5 3 – 3 5
б) г)
– 3 5 – 5 3
4. Установите соответствие между квадратными
неравенствами и их решениями. ответ запишите в таблицу.
А [–6; 2]
1 х 2 + 4х – 12 ≥ 0 Б (–∞; –2] U [6; +∞)
2 х 2 – 4х – 12 ≤ 0 В (–∞; –6] U [2; +∞)
3 х 2 + 4х – 12 ≤ 0 Г [–6; –2]
4 х 2 – 4х – 12 ≥ 0 Д [–2; 6]
Е (–∞; 2] U [–6; +∞)
5. Решите квадратные неравенства и запишите полученные
ответы.
а) – 2х 2 – 5х + 3 ≤ 0 б) 3х 2 – 4х + 7 >
Объяснение:№2. 1) f(x)= 4/(x-1), функция имеет смысл, если х≠1; значит D(f)= (-∞;1)∪(1; +∞). 2)Найдём производную: f'(x)=-4/(x-1)² 3) x=1 критическая точка, т.к. производная в этой точке не имеет смысла; 4 ) f'(x)<0, если х∈ (-∞;1)∪(1; +∞). Значит на (1; +∞) функция у=f(x) убывает, чтд.
№3. f(x)= 3 - √(1-x²) 1) функция имеет смысл, если 1-x²≥0 ⇒ -1≤х≤1, т.е. D(f)= [-1;1]. 2) найдём производную функции f'(x)=-1/2√(1-x²) · (1-x²)' = 2x/2√(1-x²) = x/√(1-x²)
f'(x) = x/√(1-x²) 3)Найдём критические точки, решив уравнение f'(x) =0, ⇒ x/√(1-x²)=0 ⇒ x=0-критическая точка 4)Найдём знаки производной в окрестности критической точки на всей области определения:
на промежутке (-1;0), f'(x)<0; на (0; 1) , f'(x)>0 5) Так как при переходе через критическую точку х=0 производная меняет знак с минуса на плюс, то это точка минимума, f(0)=2 6) Найдём значения функции на концах промежутка D(f): f(±)=3
ответ: min f(x)=f(0)=2, max f(x)=f(±1)=3
№4. Если f(x) возрастающая функция, а g(x)=3-2x -убывающая, то f(g(x))- тоже убывающая.