Вычисли значения выражений 45+27: 3 - 12 90-36: 3 x 2 84:4 x 3+2 100-10x9-8 17+15x3x0 5x5+75:5 17x3+2x10 80-5x2:10 72:6+6x5 2)Измени порядок действий с скобок и вычисли значения полученных выражений. Попроси больше объяснений. Следить. ... Изменим порядок действий и вычислим новые значения выражений: (45+27): 3 - 12 =12. 90-36:(3*2) =84. 84:(4*3)+2 =9. 100-(10*9-8) =18. (17+15)*3*0 =0.
Объяснение:
Вычисли значения выражений 45+27: 3 - 12 90-36: 3 x 2 84:4 x 3+2 100-10x9-8 17+15x3x0 5x5+75:5 17x3+2x10 80-5x2:10 72:6+6x5 2)Измени порядок действий с скобок и вычисли значения полученных выражений. Попроси больше объяснений. Следить. ... Изменим порядок действий и вычислим новые значения выражений: (45+27): 3 - 12 =12. 90-36:(3*2) =84. 84:(4*3)+2 =9. 100-(10*9-8) =18. (17+15)*3*0 =0.
Научные методы обучения математике – это методы, направленные на организацию сознательной математической деятельности учащихся, посредством осуществления адекватных мыслительных операций. Научные методы подразделяются на: чувственные: восприятие, наблюдение, опыт теоретические: анализ, сравнение, обобщение, синтез и т.д. формально-логические: дедуктивные, индуктивные и т.д. Учебные методы обучения математике – методы, разработанные специально для обучения детей в средних общеобразовательных школах, направлены на эффективность обучения. Включают в себя такие методы как эвристические, методы программирования, обучение на моделях и т.п.
Объяснение:
Бурное развитие математической науки обусловлено потребностями хозяйственной жизни человека. Земледелие, ремесло, обмен, торговля, налоги, обеспечение продовольствием, создание армии, измерение площадей земельных владений, объемов сосудов и многое другое заставляло людей заниматься счетом и вычислением. Со временем накопленные знания были приведены в четкую систему, благодаря чему человек смог вычленить особые понятия, методы и решения трудных задач, которые впоследствии легли в основу современной математической науки.
Еще в глубокой древности задолго до наступления нашей эры были сформулированы три основных понятия математики: число, величина и геометрическая фигура. В процессе тщательного счета и упорядочивания убитых на охоте зверей, сделанных горшков в мастерской, собранного урожая, возникло понятие натурального числа, как количественного, так и порядкового. В результате сравнения масс и объемов разнообразных сосудов и предметов человек пришел к пониманию понятия величина. В следствие изучения форм изделий и предметов, зданий и земельных участков и т.д. люди сформировали понятие геометрической фигуры, являющейся частью геометрического (буквально означает — измерение земли) пространства.ормированные абстрактные понятия были введены в арифметические действия над натуральными числами. Спустя некоторое время была установлена связь между натуральными числами и величинами, в результате чего появились дробные числа. Они получались в случае, когда результат измерений не выражался натуральным числом. Постепенно путем наблюдений и простейших логических рассуждений, люди пришли к простым, но гениальным по своей сути формулам для вычисления геометрических величин — длин, площадей, объемов. Из этого следует, что в это время арифметика и геометрия считались частями одного целого.