М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
snysor
snysor
27.10.2021 17:28 •  Алгебра

Найдите значение выражения m^4/m^-4 , если m=o,5.

👇
Ответ:
snopchenkoilya
snopchenkoilya
27.10.2021

ответ: 1/256

Объяснение:

m^4:m^-4=m^8

Если m= 0,5 то

0,5^8= 1/2 ^8= 1/256

4,5(97 оценок)
Открыть все ответы
Ответ:
lenkindom1
lenkindom1
27.10.2021
Пусть у Кати х марок, у Павла у марок.
Павел отдал Кате х марок, тогда у Кати стало 2х марок, а Павла (у-х) марок.
Катя отдала Павлу (у-х) марок, тогда у Павла стало 2(у-х) марок, а у Кати
2х-(у-х)=(3х-у) марок.
По условию 2(у-х) марок Павла на 40 больше, чем у него было, т.е. у марок.
Составляем  первое уравнение
2(у-х)-40=у
По условию (3х-у) марок Кати в три раза меньше, чем у нее было,т. е х марок.
Составляем второе уравнение
х=3(3х-у)
Решаем систему двух уравнений:
{2(у-х)-40=у      ⇒    у = 2х+40
{х=3(3х-у)          ⇒    3у=8х

3(2х+40)=8х
6х+120=8х\2х=120
х=60

у=2х+40=2·60+40=120+40=160
О т в е т. б) 160 марок собрал Павел.
4,5(70 оценок)
Ответ:
ybibisheva
ybibisheva
27.10.2021

По условию, нужно найти сумму несократимых дробей вида \dfrac{n}{1001}, это означает, что числа n и 1001 - взаимно простые.

S=\left\sum\dfrac{n}{1001}\right|0

Разложим число 1001 на простые множители:

1001=7\cdot11\cdot13

Рассмотрим искомую сумму, без учета условия о несократимости дроби \dfrac{n}{1001}. Тогда получим:

S^*=\dfrac{1}{1001} +\dfrac{2}{1001} +\dfrac{3}{1001} +\ldots+2

S^*=\dfrac{1}{1001} +\dfrac{2}{1001} +\dfrac{3}{1001} +\ldots+\dfrac{2002}{1001}

S^*=\dfrac{1+2+3+\ldots+2002}{1001}

Задача сводится к нахождению суммы 1+2+3+\ldots+2002. Но мы помним, что на самом деле нас интересует сумма только тех чисел от 1 до 2002, которые являются взаимно простыми с числом 1001.

Найдем количество чисел от 1 до 2002, которые не являются взаимно простыми с числом 1001. По отношению к делимости на делители числа 1001, то есть на 7, 11, 13 все такие числа можно разделить на несколько групп:

- делятся на 7, но не делятся на 11, 13;

- делятся на 11, но не делятся на 7, 13;

- делятся на 13, но не делятся на 7, 11;

- делятся на 7, 11, но не делятся на 13;

- делятся на 7, 13, но не делятся на 11;

- делятся на 11, 13, но не делятся на 7;

- делятся на 7, 11, 13.

Количества таких чисел соответственно равно:

D_7=\dfrac{2002}{7} =286

D_{11}=\dfrac{2002}{11} =182

D_{13}=\dfrac{2002}{13} =154

D_{7,11}=\dfrac{2002}{7\cdot11} =26

D_{7,13}=\dfrac{2002}{7\cdot13} =22

D_{11,13}=\dfrac{2002}{11\cdot13} =14

D_{7,11,13}=\dfrac{2002}{7\cdot11\cdot13} =2

Найти итоговое количество чисел, не взаимно простых с 1001 можно по формуле включений-исключений, которая запишется в виде:

D=(D_7+D_{11}+D_{13})-(D_{7,11}+D_{7,13}+D_{11,13})+D_{7,11,13}

Формула подразумевает, что числа, имеющие два делителя из набора (7, 11, 13) были посчитаны среди первых трех слагаемых дважды, поэтому их необходимо один раз отнять. В свою очередь числа, делящиеся на каждое число набора (7, 11, 13) были посчитаны 3 раза со знаком "плюс" и 3 раза со знаком "минус", поэтому их необходимо отдельно прибавить.

D=(286+182+154)-(26+22+14)+2=562

Тогда, количество чисел, взаимно простых с 1001:

\overline{D}=2002-D

\overline{D}=2002-562=1440

Составим следующую конструкцию. запишем числа от 1 до 2002 в столбик, а точнее для дальнейшего удобства - от 0 до 2002:

\begin{array}{ccc}0\\1\\2\\3\\\ldots\\2002\end{array}

Во второй столбик запишем те же самые числа в обратном порядке:

\begin{array}{ccc}0&2002\\1&2001\\2&2000\\3&1999\\\ldots&\ldots\\2002&0\end{array}

Заметим, что сумма чисел в каждой строчке равна 2002.

Нетрудно понять, что два числа в одной строчке либо оба делятся на 7 (аналогично, на 11, на 13), либо оба не делятся. Поскольку 2002 делится на 7, то делимость первого числа в строчке гарантирует делимость второго числа и наоборот.

Тогда, вычеркнем из нашей таблицы 562 строчки, в которых первое число (а значит и второе тоже) не является взаимно простым с числом 1001. Вычеркнем также первую вс строчку (0-2002).

В таблице останется как было определено ранее 1440 чисел в каждом из столбцов. Поскольку мы знаем суммы чисел в каждой строчке, то легко определяется сумма всех чисел в таблице:

S_t=1440\cdot2002

Заметим, что в таблице записан двойной набор тех чисел, что нам нужно сложить в числителе искомой величины.

Тогда:

S=\dfrac{1440\cdot2002}{2\cdot1001} =1440

ответ: 1440

4,7(94 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ