и
Объяснение:
Первый модуль обращается в ноль при x=-2, второй - при .
Пусть сначала
Тогда уравнение принимает вид и, очевидно, не имеет решений.
Пусть теперь
Если , то оба модуля раскрываются с плюсом и уравнение принимает вид:
Полученный x будет корнем уравнения, если он принадлежит рассматриваемому отрезку, то есть если удовлетворяет системе неравенств
Решение системы:
Если , то уравнение принимает вид
Полученный x будет корнем уравнения, если удовлетворяет системе:
Решение системы:
Пусть, наконец, . Тогда уравнение принимает вид
Полученный x будет корнем уравнения, если удовлетворяет системе:
Эта система не имеет решений.
Теперь пусть , то есть
.
Если , то
Система:
Нет решений.
Если , то
Система:
Решение системы:
И наконец, если , то
Система:
Решение:
Из вышесказанного очевидно, что
При - два решения
При - одно решение
При - нет решений
При - нет решений
При - одно решение
При - два решения
Таким образом, уравнение имеет одно решение при и
и
Объяснение:
Первый модуль обращается в ноль при x=-2, второй - при .
Пусть сначала
Тогда уравнение принимает вид и, очевидно, не имеет решений.
Пусть теперь
Если , то оба модуля раскрываются с плюсом и уравнение принимает вид:
Полученный x будет корнем уравнения, если он принадлежит рассматриваемому отрезку, то есть если удовлетворяет системе неравенств
Решение системы:
Если , то уравнение принимает вид
Полученный x будет корнем уравнения, если удовлетворяет системе:
Решение системы:
Пусть, наконец, . Тогда уравнение принимает вид
Полученный x будет корнем уравнения, если удовлетворяет системе:
Эта система не имеет решений.
Теперь пусть , то есть
.
Если , то
Система:
Нет решений.
Если , то
Система:
Решение системы:
И наконец, если , то
Система:
Решение:
Из вышесказанного очевидно, что
При - два решения
При - одно решение
При - нет решений
При - нет решений
При - одно решение
При - два решения
Таким образом, уравнение имеет одно решение при и
Здесь: a - коэффициент перед x²
b - коэффициент перед x
c - свободный член
Это стоит один раз запомнить, а потом всегда пользоваться.
Кстати, дискриминант в этих формулах тоже есть, он равен:
1.
Здесь: a = 3; b = -1; c = 1;
Подставляем:
Под корнем отрицательное число (дискриминант меньше нуля), следовательно, действительных решений нет.
2.
Здесь: a = -6; b = 37; c = -6;
Подставляем:
3.
Здесь: a = 9; b = 24; c = 16
Подставляем:
А вот и третий случай, когда дискриминант равен нулю (это то, что под корнем). В этом случае второй корень равен первому.