ответ:
объяснение:
здесь область допустимых значений состоит только из двух
под первым корнем квадратный трехчлен --парабола, ветви вверх:
2x²-8x+6 ≥ 0
x²-4x+3 ≥ 0 корни: 1 и 3 (по теореме виета)
решение: х ∈ (-∞; 1] u [3; +∞)
под вторым корнем квадратный трехчлен --парабола, ветви вниз:
-x²+4x-3 ≥ 0
x²-4x+3 ≤ 0 корни те же))
решение: х ∈ [1; 3]
пересечением этих двух промежутков (условия должны выполняться одновременно) будет множество из двух точек: х ∈ {1; 3}
легко проверить, что х=1 решением не является, т.к. сумма двух неотрицательных чисел (это квадратные корни) не может быть < 1-1 (меньше нуля)
остается х = 3: √0 + √0 < 3-1 это верно))
ответ: х=3
x = 3i или x = 3 + 2i
Объяснение:
Все формулы для вещественного случая работают и тут.
Дискриминант:
Дальше нужно будет извлечь корень из дискриминанта. В данном случае он легко угадывается, но пусть мы его не угадали; поищем такие вещественные a и b, что . Раскрываем скобки и получаем
Возводим второе уравнение в квадрат, получаем, что сумма и равна 8, их произведение – -9. По теореме, обратной к теореме Виета, и – корни уравнения , очевидно, , . Подстановкой убеждаемся, что равно .
Продолжаем применять формулы:
Это и есть ответ.