A) Решение: y=0; y= (x-2)(x-4)/x+3; (x-2)(x-4)/x+3=0; | x+3 неравно 0, следовательно x неравен -3 (x-2)(x-4)=0; х=2 и x=4 x принадлежит промежутку (2;4). Думаю рисунок сами сможете нарисовать. Там луч надо нарисовать и параболу ветвями вверх. Неравенство строгое, поэтому точки выколотые. б) a) Решение:y=0; y= x^2-8x+16/x^2-3x-10; x^2-3x-10=(x-5)(x+2)(x-2)(x-4)/x+3=0; | (x-5)(x+2) неравно 0, следовательно x неравен 5 и ч неравен -2 x^2-8x+16=0;D=64-64=0 следовательно один знаменатель. x=8/2=4x принадлежит промежутку (4;+∞). Рисунок: луч надо нарисовать. Штриховка в сторону +∞. Неравенство строгое, поэтому точка выколотая.
Каждую сторону ромба можно уменьшить на любое число положительное "a" получившийся меньший ромб все равно будет подобен исходному, но если нам необходимо сохранить пропорции сторон и площади ромбов, а n это цело число то каждую сторону ромба будем уменьшать на четное количество раз, таким образом например: если исходный ромб имеет сторону 8 то его Р= 32, уменьшим каждую сторону вдвое и получим ромб со стороной 4 тогда площадь этого ПОДОБНОГО ромба будет 16, что соответствует целому параметру n и т.д.