М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tinaZ07
tinaZ07
31.03.2023 01:32 •  Алгебра

Решите уравнения: 1) 10(2х-1)-9(х-2)+4(5х+8)=71 2)7-х(3+х)=(х+2)(5-х)

👇
Ответ:
misterbabadook
misterbabadook
31.03.2023
2) 7-х(3+х)=(х+2)(5-х)
    7-3х-х(в квадрате)=5х-х(в квадрате)+10-2х
    -3х-х(в квадрате)-5х+х(в квадрате)+2х=-7+10
    10х=3
    х=0,3
   ответ:0,3
Первый че то не получается, а второй вроде правильный  
4,4(67 оценок)
Открыть все ответы
Ответ:
astahovanadezh
astahovanadezh
31.03.2023
Y=2x²-13x+26 

1) y(-3)=2(-3)²-13(-3)+26=2*9+39+26=18+65=83

2) y=26      x-?
    2x²-13x+26=26
    2x²-13x=0
    2x(x-6,5)=0
    x=0   или  х-6,5=0
                   х=6,5
   Итак, у=26 при х=0 или при х=6,5

3) y`(x)=(2x²-13x+26)`=2*2x-13=4x-13
    y`(x)=0   при  4x-13=0
                        4(x-3,25)=0
                       -                            +
               3,25
                                     min
   y(3,25)=2*(3,25)²-13*3,25+26=21,125-42,25+26=4,875 - наименьшее
 
***Примечание: Этот же пункт можно сделать проще, без применения производной.
 Графиком функции y=2x²-13x+26  является парабола, ветви которой направлены вверх, т.к. а=2 >0, поэтому наибольшего значения функции не существует, а наименьшее значение функция принимает в ординате своей вершины.

х(в)= -(-13)/(2*2)=13/4=3,25
у(3,25)=4,875 - наименьшее

4) Находим точки пересечения функции с осью Ох:
    2x²-13x+26=0
    D=(-13)²-4*2*26=169-208=-39 <0 => точек пересечения с осью Ох не существует
   Находим точку пересечения с осью Оу:
   x=0   y(0)=2*0²-13*0+26=26
   (0;26) - искомая точка
4,7(7 оценок)
Ответ:
Katya111zz3
Katya111zz3
31.03.2023

ответ: ₁∫²(dx/(√x+1)≈0,452.

Объяснение:

₁∫²(dx/(√x+1)

Сначала решим неопределённый интеграл.      ⇒

∫(dx/(√x+1)=∫(1/(√x+1))dx.

Пусть (√x+1)=u   ⇒

du=d(√x+1)=(1/(2*√x))dx    ⇒

dx=2*√x*du   ⇒

∫(1/(√x+1))dx=∫(2*√x/u)du=2*∫(√x/u)du=2*∫((√x+1-1)/u)du=2*∫((u-1)/u)du=

=2*(∫du-∫du/u)=2*u-lnu=2*(√x+1)-2*ln(√x+1)=2*(√x+1-ln(√x+1)).

∫(dx/(√x+1)=2*(√x+1-ln(√x+1)).      ⇒

₁∫²(dx/(√x+1)=2*(√x+1-ln(√x+1))  ₁|²=2*((√2+1-ln(√2+1))-(√1+1-ln(√1+1)))

=2*(√2+1-ln(√2+1)-(2-ln(2))=2*(√2+1-ln(√2+1)-2-+ln(2))=

=2*(√2-1-ln(√2+1)+ln(2))≈0,452.

4,7(15 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ