нужно построить в одной системе координат графики функций у = х2 и
у = 2х + 3 . Они пересекаются в двух точках А(- 1; 1) и В(3; 9). Корнями уравнения служат абсциссы точек А и В, значит, х1 = -1, х2 = 3.
я файл вложила правда рисунок не очень ну ты построй и поймешь х²=2х+3 х²-2х-3 Построим график функции у = х2 - 2х - 3
1) Имеем а = 1, b = -2, х=-b/2a=1, у = f(1) = I2 - 2 - 3 = - 4. Значит, вершиной параболы служит точка (1;- 4), а осью параболы — прямая х = 1.
2) Возьмем на оси х две точки, симметричные относительно оси параболы: точки х = -1 и х =3. Имеем /(-1) = /(3) = 0; отметим в координатной плоскости точки (-1; 0) и (3; 0).
3) Через точки (-1; 0), (1; -4), (3; 0) проводим параболу (рис.1).Корнями уравнения
х2 - 2х - 3 = 0 являются абсциссы точек пересечения параболы с осью х; находим
x1= -1,
x2 = 3
рисовать не буду нет времени
его можно решить Решите графически уравнение : х²=2х+3">
В решении.
Объяснение:
335. Каково взаимное расположение графиков функций:
а) у = 7x - 4 и у = 7х + 8; параллельны; k₁ = k₂, b₁ ≠ b₂;
г) у = -4х и y = -4х – 5; параллельны; k₁ = k₂, b₁ ≠ b₂;
б) у = 10x+8 и y = — 10x+6; пересекаются; k₁ ≠ k₂;
д) у = 3x+1 и y = — 4х +1; пересекаются; k₁ ≠ k₂;
в) y= 3x — 5 и у = — 6х +1; пересекаются; k₁ ≠ k₂;
е) у = 12х и y = — 8x? пересекаются; k₁ ≠ k₂;
336. Линейные функции заданы формулами:
у= — 20x +13,
y= 3,7х -13,
y= -8–20x,
y= -3,6x —8,
y=3,6x+8, y= — 3,6х.
1) Выделите те функции, графики которых параллельные прямые.
у= -20x +13; y= -8-20x; k₁ = k₂, b₁ ≠ b₂;
y= -3,6x-8; y= -3,6х; k₁ = k₂, b₁ ≠ b₂;
2) Назовите две из за данных функций, графики которых пересекаются.
y=3,7х -13; y= -3,6x —8; k₁ ≠ k₂;
337. Функции заданы формулами: у = - 1,5х +6, y = не дописано.
1) 3n=0 ⇒ при n=0 выражение не имеет смысла
2) 5m-15=0 ⇒ при m=3 выражение не имеет смысла