М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aisultankubashev
aisultankubashev
17.04.2023 06:57 •  Алгебра

Решите . 1) 2,8m^8n: 0,7m⁴n^-2 2) 3x+1> 7

👇
Ответ:
ЯГовн0
ЯГовн0
17.04.2023
Решение смотреть во вложении
Решите . 1) 2,8m^8n: 0,7m⁴n^-2 2) 3x+1> 7
4,7(1 оценок)
Открыть все ответы
Ответ:
nastyaTYANnastya
nastyaTYANnastya
17.04.2023

Гра́фик фу́нкции — геометрическое понятие в математике, дающее представление о геометрическом образе функции.

Наиболее наглядны графики вещественнозначных функций вещественного переменного одной переменной.

Для непрерывной функции двух переменных {\displaystyle z=f(x,\ y)}{\displaystyle z=f(x,\ y)} их графики представляют собой поверхности в трёхмерном пространстве, являющиеся геометрическим местом точек {\displaystyle z,\ x,\ y.}{\displaystyle z,\ x,\ y.} Эти поверхности могут быть изображены на плоскости в какой-либо изометрической проекции (см. рисунок).

Обычно графики строят в прямоугольной системе координат, на плоскости эту систему координат называют декартовой системой координат. Также графики для повышения наглядности часто строят в других системах координат, например, в полярной системе координат или других косоугольных системах координат.

В случае использования прямоугольной системы координат, график функции — это геометрическое место точек плоскости, абсциссы (x) и ординаты (y), которые связаны отображаемой функцией:

точка {\displaystyle (x,y)}(x,y) располагается (или находится) на графике функции {\displaystyle y=f(x)}y=f(x) тогда и только тогда, когда {\displaystyle y=f(x)}y=f(x).

Таким образом, функция может быть адекватно описана своим графиком.

Из определения графика функции следует, что далеко не всякое множество точек плоскости может быть графиком некоторой функции, например, из требования однозначности функции вытекает, что никакая прямая, параллельная оси ординат не может пересекать график функции более чем в одной точке. Если функция обратима, то график обратной функции (как подмножество плоскости) будет совпадать с графиком самой функции (это, попросту, одно и то же подмножество плоскости).

4,6(71 оценок)
Ответ:
Мария1111121
Мария1111121
17.04.2023

1) уравнение стороны АВ.

Найдем уравнение АВ, проходящей через две заданные точки A и В

\begin{gathered}\displaystyle \dfrac{x-x_1}{x_2-x_1}= \dfrac{y-y_1}{y_2-y_1} \\ \\ \\ \frac{x+2}{1+2}= \frac{y+3}{6+3} \\ \\ \boxed{y-3x-3=0} \end{gathered}x2−x1x−x1=y2−y1y−y11+2x+2=6+3y+3y−3x−3=0

2) Уравнение высоты CH

\dfrac{x-x_0}{A}= \dfrac{y-y_0}{B}Ax−x0=By−y0 , где (А;B) - направляющий вектор перпендикулярной прямой АВ.

(-3;1) - направляющий вектор.

\begin{gathered}\displaystyle \frac{x-6}{-3} = \frac{y-1}{1}\\ \\ \boxed{3y+x-9=0} \end{gathered}−3x−6=1y−13y+x−9=0

3) Уравнение медианы АМ.

Координаты точки М найдем по формулам деления отрезка пополам

x= \frac{1+6}{2} = \frac{7}{2} ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y= \frac{6+1}{2} = \frac{7}{2}x=21+6=27;y=26+1=27

M(\frac{7}{2} ;\frac{7}{2} )M(27;27) - точка М.

Уравнение медианы АМ будем искать по формуле для уравнение прямой, проходящей через две заданные точки.

\begin{gathered} \dfrac{x+2}{\frac{7}{2} +3} = \dfrac{y+3}{\frac{7}{2} +3} \\ \\ \\ \boxed{11y-13x+7=0}\end{gathered}27+3x+2=27+3y+311y−13x+7=0

4) Точку пересечения медианы АМ и высоты СН

\begin{gathered}\displaystyle \left \{ {{3y+x-9=0} \atop {11y-13x+7=0}} \right. \Rightarrow \left \{ {{x=9-3y} \atop {11y-13(9-3y)+7=0}} \right. \\ \\11y-117+39y+7=0\\ \\ 50y=110\\ y=2.2\\ x=2.4\end{gathered}{11y−13x+7=03y+x−9=0⇒{11y−13(9−3y)+7=0x=9−3y11y−117+39y+7=050y=110y=2.2x=2.4

N(2.4;2.2) - точка пересечения

4,6(8 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ