М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DenisGaleev
DenisGaleev
21.12.2021 05:45 •  Алгебра

С. заранее огромное ! надо решить неравенства методом интервалов. 1. 3х в квадрате +5х-2 меньше или равно 0 2. 3х в квадрате -15 меньше или равно 0 3. х в квадрате +4х меньше или равно 0 4. 25-100х в квадрате больше 0 5. 5х в квадрате -26х +5 меньше или равно 0

👇
Ответ:
Maci189
Maci189
21.12.2021
1
3x²+5x-2≤0
D=25+24=49
x1=(-5-7)/6=-2
x2=(-5+7)/2=1
           +                   _                  +
[-2][1]
x∈[-2;1]
2
3x²-15≤0
3(x²-5)≤0
3(x-√5)(x+√5)≤0
x=√5  x=-√5
      +                   _                            +
[-√5][√5]
x∈[-√5;√5]
4
25-100x²>0
(5-10x)(5+10x)>0
x=0,5  x=-0,5
      _                   +                           _
(-0,5)(0,5)
x∈(-0,5;0,5)
5
5x²-26x+5≤0
D=676-100=576
x1=(26-24)/10=0,2
x2=(26+24)/10=5
          +                   _                  +
[0,2][5]
x∈[0,2;5]
4,8(93 оценок)
Открыть все ответы
Ответ:
gzhanatugan
gzhanatugan
21.12.2021

Дано:

P(x)=2 x^{4} -3x^{2} +2x+1

Q(x)=x^{2} -x-2

Найти R(x) - остаток от деления P(x):Q(x)

Решение.

1) Для начала разложим многочлен Q(x)  на множители, для этого решим уравнение:

x^{2}-x-2=0

x_1=-1;   x_2=-2

x^{2}-x-2=(x+1)(x-2)

2) Так как данный многочлен P(x)=2 x^{4} -3x^{2} +2x+1 делится на (x^{2}-x-2 ) с остатком, то представим его в виде

P(x)=(x^2-x-2)*T(x)+R(x)

где

T(x) - неполное частное;

R(x) - искомый остаток.

Степень остатка деления многочлена на многочлен должна быть меньше степени делителя. В данном случае делитель - многочлен второй степени, так что остаток - многочлен первой степени, который имеет вид:

R(x)=kx+b

P(x)=(x^2-x-2)*T(x)+(kx+b)

3) Подставим в равенство P(x)=(x^2-x-2)*T(x)+(kx+b) первый корень  x=-1  и получим:

P(-1)=((-1)^2-(-1)-2)*T(x)+(k*(-1)+b)

P(-1)=0*T(x)+(-k+b)

P(-1)=-k+b

Вычислим  P(-1).

P(-1)=2*(-1)^{4} -3*(-1)^{2} +2*(-1)+1=2-3-2+1=-2

Так как P(-1)=-2 , то

-k+b=-2      =>   b=k-2

4) Аналогично решаем и со вторым корнем x=2.

P(2)=2*2^{4} -3*2^{2} +2*2+1=32-12+4+1=25

P(2)=25

P(2)=(2^2-2-2)*T(x)+(k*2+b)

25=0*T(x)+(2k+b)

2k+b=25

5) Подставим  b=k-2 в полученное уравнение:

2k+(k-2)=25

3k=27

k=27:3

k=9

6) b=9-2

    b=7

R(x)=9x+7  - искомый остаток.

ответ:      9x+7

4,4(74 оценок)
Ответ:
sisennova03
sisennova03
21.12.2021

\sqrt[3]{b^3} =b - корень нечетной степени

\sqrt[6]{b^6} =|b| - для корней четной степени появляется модуль

Неравенства сводятся к таким: b\leq |b| и b\geq |b|

По определению модуля: |x|=\begin{cases} x,\ x\geq 0\\ -x,\ x

Таким образом, первое неравенство выполняется всегда. Для положительных чисел и нуля модуль равен самому числу. Для отрицательных чисел, само число меньше модуля, так как модуль будет положительным числом.

b\leq |b|

b\in(-\infty;\ +\infty)

Второе неравенство выполняется при неотрицательных b. Для положительных чисел и нуля модуль по-прежнему равен самому числу. Однако, отрицательное число не может быть больше или равно модуля, так как модуль отрицательного числа - положителен.

b\geq |b|

b\in[0;\ +\infty)

4,5(63 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ